REAL ALGEBRAIC GEOMETRY LECTURE NOTES (24: 09/07/15 - CORRECTED ON 09/07/19)

SALMA KUHLMANN

Contents

1. Baer-Krull Representation Theorem

1. Baer-Krull Representation Theorem

Recall that an ordering \leqslant and a valuation v on a field K are called compatible if

$$
0 \leqslant x \leqslant y \Rightarrow v(y) \leqslant v(x)
$$

In Proposition 2.3 of lecture 17 we fixed an ordered field (K, \leqslant) and characterized the \leqslant-compatible valuations on K. Today, we fix a valued field (K, v) and describe the v-compatible orderings on K.

Notation 1.1. Let (K, v) be a valued field. Let Γ be the value group of v. The quotient group $\bar{\Gamma}=\Gamma / 2 \Gamma$ becomes in a canonical way an \mathbb{F}_{2}-vector space. We denote by $\bar{\gamma}=\gamma+2 \Gamma$ the residue class of $\gamma \in \Gamma$.
Let $\left\{\pi_{i}: i \in I\right\} \subseteq K^{*}$ such that $\left\{\overline{v\left(\pi_{i}\right)}: i \in I\right\}$ is an \mathbb{F}_{2}-basis of $\bar{\Gamma}$. Then $\left\{\pi_{i}: i \in I\right\}$ is called a quadratic system of representatives of K with respect to v.

Theorem 1.2. (Baer-Krull Representation Theorem)
Let (K, v) be a valued field. Let $\mathcal{X}(K)$ and $\mathcal{X}(K v)$ denote the set of all orderings of K and $K v$, respectively. Fix some quadratic system $\left\{\pi_{i}: i \in I\right\}$ of representatives of K with respect to v.
Then there is a bijective correspondence

$$
\left\{P \in \mathcal{X}(K): K_{v} \text { is } P \text {-convex }\right\} \longleftrightarrow\{-1,1\}^{I} \times \mathcal{X}(K v)
$$

described as follows: given an ordering P on K such that K_{v} is P-convex, let $\eta_{P}: I \rightarrow\{-1,1\}$, where $\eta_{P}(i)=1 \Leftrightarrow \pi_{i} \in P$. Then the map

$$
P \mapsto\left(\eta_{P}, \bar{P}\right)
$$

is the above bijective correspondence.
Proof. Given a mapping $\eta: I \rightarrow\{-1,1\}$ and an ordering Q on $K v$, we will define an ordering $P(\eta, Q)$ on K, such that K_{v} is $P(\eta, Q)$-convex and $P(\eta, Q)$ is mapped to (η, Q) by the map described in the claim.
Let $a \in K^{*}$. As $\left\{\overline{v\left(\pi_{i}\right)}: i \in I\right\}$ is a basis of $\bar{\Gamma}$, there exist uniquely determined indices i_{1}, \ldots, i_{r} such that

$$
\overline{v(a)}=\overline{v\left(\pi_{i_{1}}\right)}+\ldots+\overline{v\left(\pi_{i_{r}}\right)}
$$

Thus, for some $b \in K$, one has

$$
\begin{aligned}
v(a) & =v\left(\pi_{i_{1}}\right)+\ldots+v\left(\pi_{i_{r}}\right)+2 v(b) \\
& =v\left(\pi_{i_{1}} \ldots \pi_{i_{r}} b^{2}\right)
\end{aligned}
$$

Hence, we find some $u \in U_{v}$ such that

$$
a=u \pi_{i_{1}} \cdots \pi_{i_{r}} b^{2}
$$

Note that since b is only determined up to a unit, u is only determined up to a unit square. Let $\eta: I \rightarrow\{-1,1\}$ be a mapping and $Q \in \mathcal{X}(K v)$ a positive cone on $K v$. We define $P(\eta, Q) \subset K$ by $0 \in P(\eta, Q)$ and for each $a \in K^{*}$ with $a=u \pi_{i_{1}} \cdot \ldots \cdot \pi_{i_{r}} b^{2}$ as above,

$$
a \in P(\eta, Q): \Leftrightarrow \eta\left(i_{1}\right) \cdots \eta\left(i_{r}\right) \bar{u} \in Q .
$$

Note that $P(\eta, Q)$ is well-defined, as u and hence \bar{u} is determined up to a unit square and i_{1}, \ldots, i_{r} are completely determined. We have to show that $P(\eta, Q)$ is an ordering such that K_{v} is $P(\eta, Q)$-convex, and that $\overline{P(\eta, Q)}=Q$. We first show that $P(\eta, Q)$ is additively closed. Let $a, a^{\prime} \in P(\eta, Q)$ with $a, a^{\prime} \neq 0$. Moreover, let $u, u^{\prime} \in U_{v}, b, b^{\prime} \in K$ and $i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s} \in I$ such that

$$
\begin{array}{r}
a=u \pi_{i_{1}} \cdots \pi_{i_{r}} b^{2}, \\
a^{\prime}=u^{\prime} \pi_{j_{1}} \cdots \pi_{j_{s}}\left(b^{\prime}\right)^{2} .
\end{array}
$$

If $v(a) \neq v\left(a^{\prime}\right)$, say $v(a)<v\left(a^{\prime}\right)$, then $v\left(a+a^{\prime}\right)=v(a)$. Hence, $a+a^{\prime}=c a$ for some $c \in U_{v}$. Note that $\frac{a^{\prime}}{a} \in I_{v}$. Thus, from $1+\frac{a^{\prime}}{a}=c$ follows $\bar{c}=\overline{1}$. We obtain $a+a^{\prime}=c u \pi_{i_{1}} \cdots \pi_{i_{r}} b^{2}$.
As $a \in P(\eta, Q)$ we have

$$
\begin{aligned}
Q \ni \eta\left(i_{1}\right) \cdots \eta\left(i_{r}\right) \bar{u} & =\eta\left(i_{1}\right) \cdots \eta\left(i_{r}\right) \overline{1} \bar{u} \\
& =\eta\left(i_{1}\right) \cdots \eta\left(i_{r}\right) \overline{c u}
\end{aligned}
$$

Hence, $a+a^{\prime} \in P(\eta, Q)$.
If $v(a)=v\left(a^{\prime}\right)$, then $\left\{i_{1}, \ldots, i_{r}\right\}=\left\{j_{1}, \ldots, j_{s}\right\}$. Furthermore, $b^{\prime}=b u^{\prime \prime}$ for some $u^{\prime \prime} \in U_{v}$. Hence,

$$
a+a^{\prime}=\left(u+u^{\prime}\left(u^{\prime \prime}\right)^{2}\right) b^{2} \pi_{i_{1}} \cdots \pi_{i_{r}}
$$

If $\eta\left(\pi_{i_{1}}\right) \cdots \eta\left(\pi_{i_{r}}\right)=1$, then $\bar{u}, \overline{u^{\prime}} \in Q$ and hence

$$
\overline{u+u^{\prime}+\left(u^{\prime \prime}\right)^{2}}=\eta\left(\pi_{i_{1}}\right) \cdots \eta\left(\pi_{i_{r}}\right) \overline{u+u^{\prime}+\left(u^{\prime \prime}\right)^{2}} \in Q
$$

i.e. $a+a^{\prime} \in P(\eta, Q)$.

If $\eta\left(\pi_{i_{1}}\right) \cdots \eta\left(\pi_{i_{r}}\right)=-1$, then $-\bar{u},-\overline{u^{\prime}} \in Q$. Hence

$$
-\overline{u+u^{\prime}\left(u^{\prime \prime}\right)^{2}}=\eta\left(\pi_{i_{1}}\right) \cdots \eta\left(\pi_{i_{r}}\right) \overline{u+u^{\prime}\left(u^{\prime \prime}\right)^{2}} \in Q
$$

and therefore $a+a^{\prime} \in P(\eta, Q)$.
In order to prove that $P(\eta, Q)$ is closed under multiplication, we extend η to an \mathbb{F}_{2}-linear map from $\bar{\Gamma}$ to $\{-1,1\}$. We define $\eta\left(\overline{v\left(\pi_{i}\right)}\right)=\eta(i)$, which determines the map completely, since the elements $\overline{v\left(\pi_{i}\right)}$ form a basis for $\bar{\Gamma}$. By composing

$$
K^{*} \xrightarrow{v} \Gamma \rightarrow \bar{\Gamma} \xrightarrow{\eta}\{-1,1\}
$$

we obtain a group homomorphism $K^{*} \rightarrow\{-1,1\}$, which we also denote by η. We have $a \in P(\eta, Q)$ if and only if $\eta(a) \bar{u} \in Q$ for all $a \in K^{*}$. From this it
follows at once that $a a^{\prime} \in P(\eta, Q)$ for $a, a^{\prime} \in P(\eta, Q)$. As $Q \cup-Q=K v$, it is clear from the definition that

$$
P(\eta, Q) \cup-P(\eta, Q)=K
$$

and as $-1 \notin Q$, it is clear that $-1 \notin P(\eta, Q)$.
Further note that $1+I_{v} \subseteq P(\eta, Q)$. Indeed, if $x \in I_{v}$, then $v(1+x)=0$, i.e. $1+x=u b^{2}$. Thus,

$$
\overline{u b^{2}}=\overline{1+x}=\overline{1} \in Q,
$$

which implies that $1+x \in P(\eta, Q)$. Hence, by Proposition 2.3 of lecture 17, K_{v} is $P(\eta, Q)$-convex. This shows that $P(\eta, Q)$ is a positive cone of K and that K_{v} is $P(\eta, Q)$-convex.
We still have to prove that the mapping from the claim is bijective. Let $u \in U_{v} \cap P(\eta, Q)$. Then it follows from the definition that $\bar{u} \in Q$. Hence, $\overline{P(\eta, Q)} \subseteq Q$. As $\overline{P(\eta, Q)}$ and Q are both positive cones, $\overline{P(\eta, Q)}=Q$. Moreover, $\pi_{i} \in P(\eta, Q) \Leftrightarrow \eta\left(\pi_{i}\right)=1$ is clear from the definition. This proves surjectivity of the map described in the claim.
Injectivity: Assume P is mapped to (η, Q). It is clear from the definition that $P(\eta, Q) \subseteq P$, and threfore $P(\eta, Q)=P$.

Remark 1.3. Under additional assumptions, either factor of the cartesian product in the Baer-Krull Theorem may vanish.
(1) If Γ is 2-divisible, then $\bar{\Gamma}=\{0\}$, and therefore $I=\emptyset$. Thus, there is a bijective correspondence

$$
\left\{P \in \mathcal{X}(K): K_{v} \text { is } P \text {-convex }\right\} \longleftrightarrow \mathcal{X}(K v)
$$

(2) If $\sum(K v)^{2}$ is an ordering, then $K v$ is uniquely ordered (see RAG I). Thus, there is a bijective correspondence

$$
\left\{P \in \mathcal{X}(K): K_{v} \text { is } P \text {-convex }\right\} \longleftrightarrow\{-1,1\}^{I}
$$

Remark 1.4. If (K, \leqslant) is an ordered field, then

$$
\mathbb{Z}(\leqslant):=\{x \in K: x,-x \leqslant a \text { for some } a \in \mathbb{Z}\}
$$

is called the \leqslant-convex hull of \mathbb{Z} in K. It is a valuation ring on K which is non-trivial (i.e. $\neq K$) if and only if \leqslant is non-Archimedean.

Corollary 1.5. A field K admits a non-Archimedean ordering if and only if K carries a non-trivial valuation with real residue class field.

Proof. Let P be a non-Archimedean ordering on K. Then $\mathbb{Z}(P)$ corresponds to a non-trivial valuation v on K, and $K_{v}=\mathbb{Z}(P)$ is P-convex. Applying the Baer-Krull Theorem to (K, v) yields that P corresponds to $\left(\eta_{P}, \bar{P}\right)$. In particular, \bar{P} is an ordering on $K v$, i.e. $K v$ is real.
Conversely, let v be a non-trivial valuation on K (i.e. $K_{v} \subsetneq K$) with real residue class field $K v$. Let Q be an ordering on $K v$ and choose $\eta=1$ (i.e. $\eta(i)=1$ for all i. By the Baer-Krull Theorem, there exists an ordering P of K for which K_{v} is P-convex. Note that $\mathbb{Z}(P) \subseteq K_{v} \subsetneq K$, since $\mathbb{Z}(P)$ is the smallest P-convex subring of K. Thus, P is non-Archimedean.

