20. Script zur Vorlesung: Algebra (B III)

Prof. Dr. Salma Kuhlmann, Gabriel Lehéricy, Simon Müller

WS 2016/2017: 20. Januar 2017

Satz 1

G ist auflösbar \Leftrightarrow es existiert ein $k \in \mathbb{N}$ mit $G^{(k)} = 1$.

Beweis

" \Leftarrow " Die Normalreihe $G \rhd G' \rhd \cdots$ hat abelsche Faktoren.

" \Rightarrow " Sei $G = G_1 \triangleright \cdots \triangleright G_s \triangleright G_{s+1} = \{1\}$ eine Normalreihe mit abelschen Faktoren G_i/G_{i+1} . Lemma (20. Vorlesung) $\Rightarrow G_{i+1} \supseteq G'_i$ für alle i.

Behauptung $G_i \supset G^{(i)}$ für alle *i*. Bei i = 1 gilt $G = G_1 \supset G'$ \checkmark Induktionsannahme für k \checkmark

Induktionsschritt für $k+1:G_{k+1}\supseteq (G_k)'\supseteq (G^{(k)})'=G^{(k+1)}$

Da $G_{s+1} = \{1\}$ folgt insbesondere $G^{(s+1)} = \{1\}$

Satz 2

Sei G auflösbar.

- (1) Sei $H \leq G$. Dann ist H auflösbar.
- (2) Sei $\eta:G \twoheadrightarrow H$ eine surjektive Homorphie, dann ist H auflösbar.
- (3) **Zusatz:** Sei G eine beliebige Gruppe und $K \triangleleft G$, so dass K und G/K auflösbar sind, dann ist G auch auflösbar.

Beweis

- (1) $H \subseteq G \Rightarrow H^{(i)} \subseteq G^{(i)}$, also $G^{(k)} = \{1\} \Rightarrow H^{(k)} = \{1\}$.
- (2) $\eta(G^{(i)}) = \eta(G)^{(i)}$. Also $G^{(k)} = \{1\} \Rightarrow \eta(G)^{(k)} = \{1\}$. Also $H^{(k)} = \{1\}$.
- (3) Sei $\pi: G \to G/K$ die kanonische Projektion. Es gilt $\pi(G^{(i)}) = (G/K)^{(i)}$. Nun ist G/K auflösbar $\Rightarrow \exists k \text{ mit } \pi(G^{(k)}) = (G/K)^{(k)} = \{1\}$, i.e. für alle $x \in G^{(k)}$ gilt xK = K, i.e. für alle $x \in G^{(k)}$ gilt $x \in K$, i.e. $G^{(k)} \subset K$. Nun ist aber auch K auflösbar, also existiert ℓ mit $G^{(k+\ell)} = (G^{(k)})^{\ell} \subseteq K^{(\ell)} = \{1\}$.

2

Bemerkungen

1. Eine endliche abelsche Gruppe $G \neq \{1\}$, die einfach ist, ist zyklisch mit Primordnung. **Beweis** Da jede Untergruppe normal ist, G aber einfach, folgt daraus, dass die einzigen

Untergruppen $\{1\}$ und G sind. Sei $x \neq 1$ mit $x \in G$, also < x >= G, so ist G zyklisch. Wenn |G| keine Primzahl ist, dann gibt es eine Primzahl p mit p||G| und damit eine zyklische Untergruppte $H \leq G$ mit 1 < |H| = p < |G| - Widerspruch.

2. G ist auflösbar und einfach $\Rightarrow G$ ist abelsch.

Beweis $G \triangleright \{1\}$ ist die einzig mögliche Normalreihe.

Satz 3

Eine endliche Gruppe ist auflösbar \Leftrightarrow jeder Kompositionsfaktor einer Kompositionsreihe ist zyklisch mit Primordnung.

Beweis

" \Rightarrow " G ist auflösbar; sei $G = G_1 \triangleright \cdots \triangleright G_{s+1} = \{1\}$ eine Kompositionsreihe. Nun ist auch G_i/G_{i+1} auflösbar (siehe Satz 2 Nr. (1) und (2)) und einfach $\Rightarrow G_i/G_{i+1}$ sind abelsch, also zyklisch mit Primordnung (siehe Bemerkungen 1. und 2.).

"**⇐**" Sei

$$G = G_1 \rhd \cdots \rhd G_{s+1} = \{1\} \tag{*}$$

eine Kompositionsreihe (ex. wegen Jordan Hölder) mit G_i/G_{i+1} zyklisch mit Primordnung. Dann ist insbesondere G_i/G_{i+1} abelsch und damit ist die Reihe (*) sogar eine auflösbare Reihe.

Erinnerung

Ex. 4.1 (b) Lineare Algebra II: $n \geq 3$. A_n ist von 3-Zykeln erzeugt.

Satz 4

 A_n ist einfach für $n \geq 5$.

Beweis

Sei $K \neq \{1\}, K \triangleleft A_n$. Zu zeigen: $K = A_n$.

Behauptung 1 Wenn K ein 3-Zykel enthält, dann enthält K alle 3-Zykeln.

Beweis Sei $(123) \in K$ und (ijk) beliebig.

$$\gamma := \begin{pmatrix} 12345 \cdots \\ ijklm \cdots \end{pmatrix} \quad \text{Es gilt } \gamma(123)\gamma^{-1} = (ijk) \tag{*}$$

Ohne Einschränkung gilt $\gamma \in A_n$ (sonst ersetze durch $(lm)\gamma$). Nun ist K normal $\Rightarrow (ijk) \in K$ wegen (*).

Behauptung 2 K enthält ein 3-Zykel.

Beweis Sei $\alpha \in K \triangleleft A_n$; $\alpha \neq 1$ mit maximaler Anzahl von Fixpunkten. Wir zeigen: α ist ein 3-Zykel, sonst schreibe

(a)
$$\alpha = (123 \cdots) \cdots$$
 oder

(b)
$$\alpha = (12)(34) \cdots$$

als Produkt disjunkter Zykeln.

(Beobachte, dass im Fall (a) α noch zwei Zahlen bewegen muss, sonst ist $\alpha = (123k)$ eine ungerade Permutation - Widerspruch.) Setze $\beta := (345)$ und betrachte $\alpha_1 := \beta \alpha \beta^{-1}$ ($\alpha_1 \in K$, weil $\alpha \in K$ und $K \triangleleft A_n$).

Direktes Rechnen zeigt:

$$\alpha_1 = (124\cdots)\cdots$$
 im Fall (a) und

$$\alpha_1 = (12)(45) \cdots$$
 im Fall (b).

Auf jeden Fall ist $\alpha_1 \neq \alpha$ und damit $\alpha_2 := \alpha_1 \alpha^{-1} \neq 1$. $(\alpha_2 \in K)$. Nun ist jede $\ell > 5$ durch β fixiert. Beobachte, dass falls ℓ auch durch α fixiert ist, ℓ auch durch α_2 fixiert ist.

Direktes Rechnen im Fall (a) zeigt $\alpha_2(2) = 2$ und außerdem bewegt α in diesem Fall 1, 2, 3, 4, 5. Also hat α_2 einen extra Fixpunkt (nämlich 2) und $\alpha_2 \in K$ - Widerspurch.

Direktes Rechnen im Fall (b) zeigt $\alpha_2(1) = 1$ und $\alpha_2(2) = 2$ - Widerspruch.

Korollar

 S_n ist **nicht** auflösbar für $n \geq 5$.

Beweis

Sonst wäre A_n auflösbar, aber A_n ist einfach $\Rightarrow A_n$ ist abelsch - Widerspruch.