Reelle algebraische Geometrie I Wintersemester 2018/2019 - 22. Oktober 2018

REAL ALGEBRAIC GEOMETRY LECTURE NOTES (01: 20/10/09)

SALMA KUHLMANN

Contents

1.	Orderings	1
2.	Ordered fields	2
3.	Archimedean fields	3

Convention: When a new definition is given, the German name appears between brackets.

1. Orderings

Definition 1.1. (*partielle Anordnung*) Let Γ be a non-empty set and let \leq be a relation on Γ such that:

- (i) $\gamma \leqslant \gamma \quad \forall \gamma \in \Gamma$,
- (*ii*) $\gamma_1 \leqslant \gamma_2, \gamma_2 \leqslant \gamma_1 \Rightarrow \gamma_1 = \gamma_2 \quad \forall \gamma_1, \gamma_2 \in \Gamma,$
- (*iii*) $\gamma_1 \leqslant \gamma_2, \ \gamma_2 \leqslant \gamma_3 \Rightarrow \gamma_1 \leqslant \gamma_3 \quad \forall \gamma_1, \gamma_2, \gamma_3 \in \Gamma.$

Then \leq is a **partial order** on Γ and (Γ, \leq) is said to be a **partially ordered** set.

Example 1.2. Let X be a non-empty set. For every $A, B \subseteq X$, the relation $A \leq B \iff A \subseteq B$,

is a partial order on the power set $\mathcal{P}(X) = \{A : A \subseteq X\}.$

Definition 1.3. (*totale Anordung*) A partial order \leq on a set Γ is said to be **total** if

$$\forall \gamma_1, \gamma_2 \in \Gamma \quad \gamma_1 \leqslant \gamma_2 \text{ or } \gamma_2 \leqslant \gamma_1.$$

Notation 1.4. If (Γ, \leq) is a partially ordered set and $\gamma_1, \gamma_2 \in \Gamma$, then we write:

 $\begin{array}{l} \gamma_1 < \gamma_2 \iff \gamma_1 \leqslant \gamma_2 \quad \text{and} \quad \gamma_1 \neq \gamma_2, \\ \gamma_1 \geqslant \gamma_2 \iff \gamma_2 \leqslant \gamma_1, \\ \gamma_1 > \gamma_2 \iff \gamma_2 \leqslant \gamma_1 \quad \text{and} \quad \gamma_1 \neq \gamma_2. \end{array}$

Examples 1.5. Let $\Gamma = \mathbb{R} \times \mathbb{R} = \{(a, b) : a, b \in \mathbb{R}\}.$

(1) For every $(a_1, b_1), (a_2, b_2) \in \mathbb{R} \times \mathbb{R}$ we can define $(a_1, b_1) \leqslant (a_2, b_2) \iff a_1 \leqslant a_2$ and $b_1 \leqslant b_2$.

Then $(\mathbb{R} \times \mathbb{R}, \leq)$ is a partially ordered set.

(2) For every $(a_1, b_1), (a_2, b_2) \in \mathbb{R} \times \mathbb{R}$ we can define

 $(a_1, b_1) \leq_l (a_2, b_2) \iff [a_1 < a_2] \text{ or } [a_1 = a_2 \text{ and } b_1 \leq b_2].$

Then $(\mathbb{R} \times \mathbb{R}, \leq_l)$ is a totally ordered set. (Remark: the "l" stands for "lexicographic").

2. Ordered fields

Definition 2.1. (angeordneter Körper) Let K be a field. Let \leq be a total order on K such that:

- (i) $x \leq y \Rightarrow x + z \leq y + z \qquad \forall x, y, z \in K,$
- (ii) $0 \leq x, \ 0 \leq y \Rightarrow 0 \leq xy \qquad \forall x, y \in K.$

Then the pair (K, \leq) is said to be an **ordered field**.

Examples 2.2. The field of the rational numbers (\mathbb{Q}, \leq) and the field of the real numbers (\mathbb{R}, \leq) are ordered fields, where \leq denotes the usual order.

Definition 2.3. (formal reell Körper) A field K is said to be (formal) real if there is an order \leq on K such that (K, \leq) is an ordered field.

Proposition 2.4. Let (K, \leq) be an ordered field. The following hold:

- $a \leq b \Leftrightarrow 0 \leq b a \qquad \forall a, b \in K$
- $0 \leq a^2 \quad \forall a \in K$
- $a \leq b, 0 \leq c \Rightarrow ac \leq bc \qquad \forall a, b, c \in K$
- $0 < a \leq b \Rightarrow 0 < 1/b \leq 1/a \qquad \forall a, b \in K$
- 0 < n $\forall n \in \mathbb{N}$

Remark 2.5. If K is a real field then char(K) = 0 and K contains a copy of \mathbb{Q} .

Notation 2.6. Let (K, \leq) be an ordered field and let $a \in K$.

$$sign(a) := \begin{cases} 1 & \text{if } a > 0, \\ 0 & \text{if } a = 0, \\ -1 & \text{if } a < 0. \end{cases}$$

3

$$|a| := \operatorname{sign}(a)a.$$

Fact 2.7. Let (K, \leq) be an ordered field and let $a, b \in K$. Then

- (i) $\operatorname{sign}(ab) = \operatorname{sign}(a) \operatorname{sign}(b)$,
- (ii) |ab| = |a| |b|,
- (*iii*) $|a+b| \leq |a|+|b|$.

3. Archimedean fields

Definition 3.1. (archimedischer Körper) Let (K, \leq) be a field. We say that K is Archimedean if

$$\forall a \in K \ \exists n \in \mathbb{N} \text{ such that } a < n.$$

Definition 3.2. Let $(\Gamma \leq)$ be an ordered set and let $\Delta \subseteq \Gamma$. Then

• Δ is **cofinal** (*kofinal*) in Γ if

 $\forall \ \gamma \in \Gamma \ \exists \ \delta \in \Delta \ \text{ such that } \ \gamma \leqslant \delta.$

• Δ is coinitial (*koinitial*) in Γ if

 $\forall \ \gamma \in \Gamma \ \exists \ \delta \in \Delta \ \text{ such that } \ \delta \leqslant \gamma.$

• Δ is **coterminal** (*koterminal*) in Γ if Δ is cofinal and coinitial in Γ .

Example 3.3. Let $(K \leq)$ be an Archimedean field. Then \mathbb{N} is cofinal in K, $-\mathbb{N}$ is coinitial in K and $\mathbb{Z} = -\mathbb{N} \cup \mathbb{N}$ is coterminal in K.

Remark 3.4.

- If (K, \leq) is an Archimedean field and $Q \subseteq K$ is a subfield, then (Q, \leq) is an Archimedean field.
- (\mathbb{R}, \leq) is an Archimedean field and therefore also (\mathbb{Q}, \leq) is.

Remark 3.5. Let (K, \leq) be an ordered field. Then K is Archimedean if and only if $\forall a, b \in K^* \exists n \in \mathbb{N}$ such that

$$|a| \leq n|b|$$
 and $|b| \leq n|a|$.

Example 3.6. Let $\mathbb{R}[x]$ be the ring of the polynomials with coefficients in \mathbb{R} . We denote by $ff(\mathbb{R}[x])$ the field of the rational functions of $\mathbb{R}[x]$, i.e.

$$ff(\mathbb{R}[\mathbf{x}]) = \mathbb{R}(\mathbf{x}) := \left\{ \frac{f(\mathbf{x})}{g(\mathbf{x})} : f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{R}[\mathbf{x}] \text{ and } g(\mathbf{x}) \neq 0 \right\}.$$

Let $f(\mathbf{x}) = a_n \mathbf{x}^n + a_{n-1} \mathbf{x}^{n-1} + \dots + a_1 \mathbf{x} + a_0 \in \mathbb{R}[\mathbf{x}]$ and let $k \in \mathbb{N}$ the smallest index such that $a_k \neq 0$ (and therefore actually $f(\mathbf{x}) = a_n \mathbf{x}^n + \dots + a_k \mathbf{x}^k$). We define

$$f(\mathbf{x}) > 0 \iff a_k > 0$$

and then for every $f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ with $g(\mathbf{x}) \neq 0$ we define

$$\frac{f(\mathbf{x})}{g(\mathbf{x})} \ge 0 \iff f(\mathbf{x})g(\mathbf{x}) \ge 0.$$

This is a total order on $K = ff(\mathbb{R}[\mathbf{x}])$ which makes (K, \leq) an ordered field. We claim that (K, \leq) contains

(i) an infinite positive element, i.e.

 $\exists A \in K \text{ such that } A > n \ \forall n \in \mathbb{N},$

(ii) an infinitesimal positive element, i.e.

$$\exists a \in K \text{ such that } 0 < a < 1/n \quad \forall n \in \mathbb{N}.$$

For instance the element $\mathbf{x} \in K$ is infinitesimal and the element $1/\mathbf{x} \in K$ is infinite. Therefore (K, \leq) is not Archimedean.