REAL ALGEBRAIC GEOMETRY LECTURE NOTES (03: 27/10/09 - BEARBEITET 29/10/2018)

SALMA KUHLMANN

Contents

I.	The field $\mathbb{R}(x)$	1
2.	Dedekind cuts	2
3.	The orderings on $\mathbb{R}(x)$	3
4.	Order preserving embeddings	4

1. The field $\mathbb{R}(x)$

Let us consider again the field $\mathbb{R}(x)$ of the rational functions on $\mathbb{R}[x]$:

Example 1.1. Let $f(\mathbf{x}) = a_n \mathbf{x}^n + a_{n-1} \mathbf{x}^{n-1} + \cdots + a_1 \mathbf{x} + a_0 \in \mathbb{R}[\mathbf{x}]$ and let $k \in \mathbb{N}$ the smallest index such that $a_k \neq 0$ (and therefore actually $f(\mathbf{x}) = a_n \mathbf{x}^n + \cdots + a_k \mathbf{x}^k$). We define

$$f(\mathbf{x}) > 0 \iff a_k > 0$$

and then for every $f(x), g(x) \in \mathbb{R}[x]$ with $g(x) \neq 0$ we define

$$\frac{f(\mathbf{x})}{g(\mathbf{x})} \geqslant 0 \iff f(\mathbf{x})g(\mathbf{x}) \geqslant 0.$$

This is a total order on

$$\mathbb{R}(\mathbf{x}) = \left\{ \frac{f(\mathbf{x})}{g(\mathbf{x})} : f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{R}[\mathbf{x}] \text{ and } g(\mathbf{x}) \neq 0 \right\}$$

which makes $(\mathbb{R}(x), \leq)$ an ordered field.

Remark 1.2. By the definition above

$$f(\mathbf{x}) = \mathbf{x} - r < 0 \qquad \forall r \in \mathbb{R}, \ r > 0.$$

Therefore the element $x \in \mathbb{R}(x)$ is such that

$$0 < \mathbf{x} < r \quad \forall r \in \mathbb{R}, \ r > 0.$$

We can see that there is no other ordering on $\mathbb{R}(x)$ which satisfies the above property:

Proposition 1.3. Let \leq be the ordering on $\mathbb{R}(x)$ defined in 1.1. Then \leq is the unique ordering on $\mathbb{R}(x)$ such that

$$0 < x < r \quad \forall r \in \mathbb{R}, \ r > 0.$$

Proof. Assume that \leq is an ordering on $\mathbb{R}(x)$ such that

$$0 < \mathbf{x} < r \quad \forall r \in \mathbb{R}, \ r > 0.$$

Then (see Proposition 2.4 of last lecture)

$$0 < \mathbf{x}^m < r \quad \forall m \geqslant 1, \ m \in \mathbb{N}, \ \forall r > 0, \ r \in \mathbb{R}.$$

Let $f(\mathbf{x}) = a_n \mathbf{x}^n + a_{n-1} \mathbf{x}^{n-1} + \cdots + a_k \mathbf{x}^k \in \mathbb{R}[\mathbf{x}]$ with $k \in \mathbb{N}$ the smallest index such that $a_k \neq 0$. We want to prove that $\operatorname{sign}(f) = \operatorname{sign}(a_k)$.

Let $g(\mathbf{x}) = a_n \mathbf{x}^{n-k} + \dots + a_{k+1} \mathbf{x} + a_k$. Then $f(\mathbf{x}) = \mathbf{x}^k g(\mathbf{x})$.

If k = 0, then f(x) = g(x). Otherwise $f(x) \neq g(x)$, and since $sign(f) = sign(x^k) sign(g)$ and $sign(x^k) = 1$, it follows that sign(f) = sign(g). We want $sign(g) = sign(a_k)$.

If $g(\mathbf{x}) = a_k$ we are done. Otherwise let $h(\mathbf{x}) = a_n \mathbf{x}^{n-k-1} + \cdots + a_{k+2} \mathbf{x} + a_{k+1}$. Then $g(\mathbf{x}) = a_k + \mathbf{x}h(\mathbf{x})$ and $h(\mathbf{x}) \neq 0$. Since $|\mathbf{x}^m| < 1$ for every $m \in \mathbb{N}$, we get

$$|h(\mathbf{x})| \le |a_n| + \dots + |a_{k+1}| := c > 0, \quad c \in \mathbb{R}.$$

Then

$$|xh(x)| \leqslant c|x| < |a_k|,$$

otherwise $|\mathbf{x}| \geqslant \frac{|a_k|}{c}$, contradiction.

Therefore $sign(g) = sign(a_k + xh) = sign(a_k)$, as required (Note that one needs to verify that $|a| > |b| \Rightarrow sign(a+b) = sign(a)$).

We now want to classify all orderings on $\mathbb{R}(x)$ which make it into an ordered field. For this we need the notion of Dedekind cuts.

2. Dedekind cuts

Notation 2.1. Let (Γ, \leq) be a totally ordered set and let $L, U \subseteq \Gamma$. If we write

we mean that

$$x < y \quad \forall x \in L, \ \forall y \in U.$$

(Similarly for $L \leq U$)

Definition 2.2. (*Dedekindschnitt*) Let (Γ, \leqslant) be a totally ordered set. A **Dedekind cut** of (Γ, \leqslant) is a pair (L, U) such that $L, U \subseteq \Gamma, L \cup U = \Gamma$ and L < U.

Remark 2.3. Since L < U it follows that $L \cap U = \emptyset$. Therefore the subsets L, U form a partition of Γ (The letter "L" stands for "lower cut" and the letter "U" for "upper cut").

Example 2.4. Let (Γ, \leqslant) be a totally ordered set. For every $\gamma \in \Gamma$ we can consider the following two Dedekind cuts:

$$\begin{array}{l} \gamma_{-} := (]-\infty, \gamma[, \ [\gamma, \infty[) \\ \gamma_{+} := (]-\infty, \gamma], \]\gamma, \infty[) \end{array}$$

Moreover if we take $L, U \in \{\emptyset, \Gamma\}$, then we have two more cuts:

$$-\infty := (\varnothing, \Gamma), +\infty := (\Gamma, \varnothing)$$

Example 2.5. Consider the Dedekind cut (L,U) of (\mathbb{Q},\leqslant) given by

$$L = \{x \in \mathbb{Q} : x < \sqrt{2}\} \quad \text{ and } \quad U = \{x \in \mathbb{Q} : x > \sqrt{2}\}.$$

Then there is no $\gamma \in \mathbb{Q}$ such that $(L, U) = \gamma_{-}$ or $(L, U) = \gamma_{+}$.

Definition 2.6. (trivialen und freie Schnitte) Let (L, U) be a Dedekind cut of a totally ordered set (Γ, \leq) . If $(L, U) = \pm \infty$ or there is some $\gamma \in \Gamma$ such that $(L, U) = \gamma_+$ or $(L, U) = \gamma_-$ (as defined in 2.4), then (L, U) is said to be a **trivial** (or **realized**) Dedekind cut. Otherwise it is said to be a **free** Dedekind cut (or **gap**).

Remark 2.7. A Dedekind cut (L, U) of a totally ordered set (Γ, \leq) is free if $L \neq \emptyset$, $U \neq \emptyset$, L has no last element and U has no least element.

Definition 2.8. (Dedekindvollständing) A totally ordered set (Γ, \leqslant) is said to be **Dedekind complete** if for every pair (L, U) of subsets of Γ with $L \neq \emptyset$, $U \neq \emptyset$ and $L \leqslant U$, there exists $\gamma \in \Gamma$ such that

$$L \leqslant \gamma \leqslant U$$
.

Exercise 2.9. Show that a totally ordered set (Γ, \leq) is Dedekind complete if and only if (Γ, \leq) has no free Dedekind cuts.

Examples 2.10.

- The ordered set of the reals (\mathbb{R}, \leq) is Dedekind complete, i.e. the set of Dedekind cuts of (\mathbb{R}, \leq) is $\{a_{\pm} : a \in \mathbb{R}\} \cup \{-\infty, +\infty\}$.
- We have already seen in 2.5 that (\mathbb{Q}, \leq) is not Dedekind complete. We can generalize 2.5: for every $\alpha \in \mathbb{R} \mathbb{Q}$ we have the gap given by $(]-\infty, \alpha[\cap \mathbb{Q},]\alpha, \infty[\cap \mathbb{Q})$.

3. The orderings on $\mathbb{R}(x)$

Theorem 3.1. There is a canonical bijection between the set of the orderings on $\mathbb{R}(x)$ and the set of the Dedekind cuts of \mathbb{R} .

Proof. Let \leq be an ordering on $\mathbb{R}(\mathbf{x})$. Consider the sets $L = \{v \in \mathbb{R} : v < \mathbf{x}\}$ and $U = \{w \in \mathbb{R} : \mathbf{x} < w\}$. Then $C_{\mathbf{x}}^{\leq} := (L, U)$ is a Dedekind cut of \mathbb{R} . (Note that if \leq is the order defined in 1.1 then $C_{\mathbf{x}}^{\leq} = 0_{+}$). So we can define a map

 $\{ \leqslant : \leqslant \text{ is an ordering on } \mathbb{R}(\mathbf{x}) \} \xrightarrow{f} \{ (L, U) : (L, U) \text{ is a Dedekind cut of } \mathbb{R} \}$

$$\leqslant$$
 \mapsto $\mathcal{C}_{\mathrm{x}}^{\leqslant}$

We now want to find a map

$$\{(L,U):(L,U) \text{ is a Dedekind cut of } \mathbb{R}\} \longrightarrow \{\leqslant : \leqslant \text{ is an ordering on } \mathbb{R}(\mathbf{x})\}$$

which is the inverse of f. Every Dedekind cut of (\mathbb{R}, \leq) is of the form $-\infty$, $a_-, a_+, +\infty$, with $a \in \mathbb{R}$. With a change of variable, respectively, y := -1/x, y := a - x, y := x - a, y := 1/x, we obtain an ordering on $\mathbb{R}(y)$ such that

$$0 < \mathbf{v} < r \quad \forall r \in \mathbb{R}, \ r > 0.$$

We have seen in 1.3 that there is only one ordering with such a property, so we have a well-defined map from the set of the Dedekind cuts of (\mathbb{R}, \leq) into the set of orderings of $\mathbb{R}(x)$. It is precisely the inverse of f.

4. Order preserving embeddings

Definition 4.1. (ordungstreue Einbettung) Let (K, \leq) and (F, \leq) be ordered fields. An injective homomorphism of fields

$$\varphi \colon K \hookrightarrow F$$

is said to be an order preserving embedding if

$$a \leqslant b \Rightarrow \varphi(a) \leqslant \varphi(b) \quad \forall a, b \in K.$$

Theorem 4.2 (Hölder). Let (K, \leq) be an Archimedean ordered field. Then there is an order preserving embedding

$$\varphi \colon K \hookrightarrow \mathbb{R}.$$

Proof. Let $a \in K$. Consider the sets

$$I_a :=]-\infty, a]_K \cap \mathbb{Q}$$
 and $F_a := [a, \infty]_K \cap \mathbb{Q}$.

Then $I_a \leqslant F_a$ and $I_a \cup F_a = \mathbb{Q}$. So we can define

$$\varphi(a) := \sup I_a = \inf F_a \in \mathbb{R}.$$

Since K is Archimedean, φ is well-defined. Note that

$$I_a + I_b = \{x + y : x \in I_a, y \in I_b\} \subseteq I_{a+b}$$

and

$$F_a + F_b \subseteq F_{a+b}$$
,

then $\varphi(a) + \varphi(b) \leqslant \varphi(a+b)$ and $\varphi(a) + \varphi(b) \geqslant \varphi(a+b)$. This proves that φ is additive. Similarly one gets $\varphi(ab) = \varphi(a)\varphi(b)$.