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1. The field R(x)

Let us consider again the �eld R(x) of the rational functions on R[x]:

Example 1.1. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ R[x] and let
k ∈ N the smallest index such that ak 6= 0 (and therefore actually f(x) =
anx

n + · · ·+ akx
k). We de�ne

f(x) > 0 ⇔ ak > 0

and then for every f(x), g(x) ∈ R[x] with g(x) 6= 0 we de�ne

f(x)

g(x)
> 0 ⇔ f(x)g(x) > 0.

This is a total order on

R(x) =

{
f(x)

g(x)
: f(x), g(x) ∈ R[x] and g(x) 6= 0

}
which makes (R(x),6) an ordered �eld.

Remark 1.2. By the de�nition above

f(x) = x− r < 0 ∀ r ∈ R, r > 0.

Therefore the element x ∈ R(x) is such that

0 < x < r ∀ r ∈ R, r > 0.

We can see that there is no other ordering on R(x) which satis�es the above
property:
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Proposition 1.3. Let 6 be the ordering on R(x) de�ned in 1.1. Then 6 is

the unique ordering on R(x) such that

0 < x < r ∀ r ∈ R, r > 0.

Proof. Assume that 6 is an ordering on R(x) such that

0 < x < r ∀ r ∈ R, r > 0.

Then (see Proposition 2.4 of last lecture)

0 < xm < r ∀m > 1, m ∈ N, ∀ r > 0, r ∈ R.

Let f(x) = anx
n + an−1x

n−1 + · · · + akx
k ∈ R[x] with k ∈ N the smallest

index such that ak 6= 0. We want to prove that sign(f) = sign(ak).

Let g(x) = anx
n−k + · · ·+ ak+1x + ak. Then f(x) = xkg(x).

If k = 0, then f(x) = g(x). Otherwise f(x) 6= g(x), and since sign(f) =
sign(xk) sign(g) and sign(xk) = 1, it follows that sign(f) = sign(g). We want
sign(g) = sign(ak).

If g(x) = ak we are done. Otherwise let h(x) = anx
n−k−1 + · · ·+ ak+2x+

ak+1. Then g(x) = ak +xh(x) and h(x) 6= 0. Since |xm| < 1 for every m ∈ N,
we get

|h(x)| 6 |an|+ · · ·+ |ak+1| := c > 0, c ∈ R.

Then

|xh(x)| 6 c|x| < |ak|,

otherwise |x| > |ak|c , contradiction.

Therefore sign(g) = sign(ak + xh) = sign(ak), as required (Note that one
needs to verify that |a| > |b| ⇒ sign(a+ b) = sign(a)).

�

We now want to classify all orderings on R(x) which make it into an
ordered �eld. For this we need the notion of Dedekind cuts.

2. Dedekind cuts

Notation 2.1. Let (Γ,6) be a totally ordered set and let L,U ⊆ Γ. If we
write

L < U

we mean that

x < y ∀x ∈ L, ∀ y ∈ U.

(Similarly for L 6 U)

De�nition 2.2. (Dedekindschnitt) Let (Γ,6) be a totally ordered set. A
Dedekind cut of (Γ,6) is a pair (L,U) such that L,U ⊆ Γ, L∪U = Γ and
L < U .
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Remark 2.3. Since L < U it follows that L∩U = ∅. Therefore the subsets
L,U form a partition of Γ (The letter "L" stands for "lower cut" and the
letter "U" for "upper cut").

Example 2.4. Let (Γ,6) be a totally ordered set. For every γ ∈ Γ we can
consider the following two Dedekind cuts:

γ− := (]−∞, γ[, [γ,∞[)
γ+ := (]−∞, γ], ]γ,∞[)

Moreover if we take L,U ∈ {∅,Γ}, then we have two more cuts:

−∞ := (∅,Γ), +∞ := (Γ,∅)

Example 2.5. Consider the Dedekind cut (L,U) of (Q,6) given by

L = {x ∈ Q : x <
√

2} and U = {x ∈ Q : x >
√

2}.

Then there is no γ ∈ Q such that (L,U) = γ− or (L,U) = γ+.

De�nition 2.6. (trivialen und freie Schnitte) Let (L,U) be a Dedekind cut
of a totally ordered set (Γ,6). If (L,U) = ±∞ or there is some γ ∈ Γ such
that (L,U) = γ+ or (L,U) = γ− (as de�ned in 2.4), then (L,U) is said to
be a trivial (or realized) Dedekind cut. Otherwise it is said to be a free
Dedekind cut (or gap).

Remark 2.7. A Dedekind cut (L,U) of a totally ordered set (Γ,6) is free
if L 6= ∅, U 6= ∅, L has no last element and U has no least element.

De�nition 2.8. (Dedekindvollständing) A totally ordered set (Γ,6) is said
to be Dedekind complete if for every pair (L,U) of subsets of Γ with
L 6= ∅, U 6= ∅ and L 6 U , there exists γ ∈ Γ such that

L 6 γ 6 U.

Exercise 2.9. Show that a totally ordered set (Γ,6) is Dedekind complete
if and only if (Γ,6) has no free Dedekind cuts.

Examples 2.10.

- The ordered set of the reals (R,6) is Dedekind complete, i.e. the set
of Dedekind cuts of (R,6) is {a± : a ∈ R} ∪ {−∞,+∞}.

- We have already seen in 2.5 that (Q,6) is not Dedekind complete.
We can generalize 2.5: for every α ∈ R − Q we have the gap given
by ( ]−∞, α[ ∩ Q, ]α,∞ [ ∩ Q).

3. The orderings on R(x)

Theorem 3.1. There is a canonical bijection between the set of the orderings

on R(x) and the set of the Dedekind cuts of R.

Proof. Let 6 be an ordering on R(x). Consider the sets L = {v ∈ R : v < x}
and U = {w ∈ R : x < w}. Then C6x := (L,U) is a Dedekind cut of R. (Note
that if 6 is the order de�ned in 1.1 then C6x = 0+). So we can de�ne a map
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{6 :6 is an ordering on R(x)} f−→ {(L,U) : (L,U) is a Dedekind cut of R}

6 7→ C6x

We now want to �nd a map
{(L,U) : (L,U) is a Dedekind cut of R} −→ {6 :6 is an ordering on R(x)}

which is the inverse of f . Every Dedekind cut of (R,6) is of the form −∞,
a−, a+, +∞, with a ∈ R. With a change of variable, respectively, y := −1/x,
y := a− x, y := x− a, y := 1/x, we obtain an ordering on R(y) such that

0 < y < r ∀ r ∈ R, r > 0.

We have seen in 1.3 that there is only one ordering with such a property, so
we have a well-de�ned map from the set of the Dedekind cuts of (R,6) into
the set of orderings of R(x). It is precisely the inverse of f .

�

4. Order preserving embeddings

De�nition 4.1. (ordungstreue Einbettung) Let (K,6) and (F,6) be ordered
�elds. An injective homomorphism of �elds

ϕ : K ↪→ F

is said to be an order preserving embedding if

a 6 b ⇒ ϕ(a) 6 ϕ(b) ∀ a, b ∈ K.

Theorem 4.2 (Hölder). Let (K,6) be an Archimedean ordered �eld. Then

there is an order preserving embedding

ϕ : K ↪→ R.
Proof. Let a ∈ K. Consider the sets

Ia := ]−∞, a]K ∩ Q and Fa := [a,∞[K ∩ Q.

Then Ia 6 Fa and Ia ∪ Fa = Q. So we can de�ne

ϕ(a) := sup Ia = inf Fa ∈ R.

Since K is Archimedean, ϕ is well-de�ned. Note that

Ia + Ib = {x+ y : x ∈ Ia, y ∈ Ib} ⊆ Ia+b

and
Fa + Fb ⊆ Fa+b,

then ϕ(a) + ϕ(b) 6 ϕ(a + b) and ϕ(a) + ϕ(b) > ϕ(a + b). This proves that
ϕ is additive. Similarly one gets ϕ(ab) = ϕ(a)ϕ(b).

�


