REAL ALGEBRAIC GEOMETRY LECTURE NOTES (05: 03/11/09 - BEARBEITET 12/11/2018))

SALMA KUHLMANN

Contents

1. Real closed fields 1
2. The algebraic closure of a real closed field 2
3. Factorization in $R[\mathrm{x}] \quad 3$

1. Real closed fields

We first recall Artin-Schreier characterization of real closed fields:
Proposition 1.1. (Artin-Schreier, 1926) Let K be a field. The following are equivalent:
(i) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

$$
K=K^{2} \cup-\left(K^{2}\right) .
$$

Corollary 1.2. If K is a real closed field then

$$
K^{2}=\left\{a^{2}: a \in K\right\}
$$

is the unique ordering of K.
Proof. Since K is a real closed field, by $(i i)$ it has an ordering P which does not extend to any proper algebraic extension.

Let $b \in P$. Then $b=a^{2}$ for some $a \in K$, otherwise P extends to an ordering of $K(\sqrt{b})$, which is a proper algebraic extension of K.

Therefore $P=K^{2}$.
Remark 1.3. We denote by $\sum K^{2}$ the unique ordering of a real closed field K, even though we know that $\sum K^{2}=K^{2}$, to avoid any confusion with the cartesian product $K \times K$.
Corollary 1.4. Let (K, \leqslant) be an ordered field. Then K is real closed if and only if
(a) every positive element in K has a square root in K, and
(b) every polynomial of odd degree has a root in K.

Examples 1.5. \mathbb{R} is real closed and \mathbb{Q} is not.

2. The algebraic closure of a real closed field

Lemma 2.1. (Hilfslemma) If K is a field such that K^{2} is an ordering of K, then every element of $K(\sqrt{-1})$ is a square.

Proof. Let $x=a+\sqrt{-1} b \in K(\sqrt{-1}):=L, a, b \in K, b \neq 0$. We want to find $y \in L$ such that $x=y^{2}$.

$$
\begin{gathered}
K^{2} \text { is an ordering } \Rightarrow a^{2}+b^{2} \in K^{2} \text {. Let } c \in K, c \geqslant 0 \text { such that } \\
\qquad a^{2}+b^{2}=c^{2} .
\end{gathered}
$$

Since $a^{2} \leqslant a^{2}+b^{2}=c^{2},|a| \leqslant c$, so $c+a \geqslant 0, c-a \geqslant 0(-c \leqslant a \leqslant c)$.
Therefore $\frac{1}{2}(c \pm a) \in K^{2}$. Let $d, e \in K, d, e \geqslant 0$ such that

$$
\begin{aligned}
& \frac{1}{2}(c+a)=d^{2} \\
& \frac{1}{2}(c-a)=e^{2} .
\end{aligned}
$$

So

$$
d=\frac{\sqrt{c+a}}{\sqrt{2}} \quad e=\frac{\sqrt{c-a}}{\sqrt{2}}
$$

Now set $y:=d+e \sqrt{-1}$. Then

$$
\begin{aligned}
y^{2} & =(d+e \sqrt{-1})^{2} \\
& =d^{2}+(e \sqrt{-1})^{2}+2 d e \sqrt{-1} \\
& =\frac{1}{2}(c+a)-\frac{1}{2}(c-a)+2 \frac{1}{2} \sqrt{(c-a)(c+a)} \sqrt{-1} \\
& =\frac{1}{2} a+\frac{1}{2} a+\sqrt{c^{2}-a^{2}} \sqrt{-1} \\
& =a+\sqrt{b^{2}} \sqrt{-1} \\
& =a+b \sqrt{-1} \\
& =x .
\end{aligned}
$$

Theorem 2.2. (Fundamental Theorem of Algebra) If K is a real closed field then $K(\sqrt{-1})$ is algebraically closed.

Proof. Let $L \supseteq K(\sqrt{-1})$ be an algebraic extension of $K(\sqrt{-1})$. We show $L=K(\sqrt{-1})$. Without loss of generality, assume it is a finite Galois extension.

Set $G:=\operatorname{Gal}(L / K)$. Then $[L: K]=|G|=2^{a} m, a \geqslant 1$, m odd.
Let $S<G$ be a 2-Sylow subgroup $\left(|S|=2^{a}\right)$, and $F:=\operatorname{Fix}(S)$. We have

$$
[F: K]=[G: S]=m \quad \text { odd }
$$

Since K is real closed, it follows that $m=1$, so $G=S$ and $|G|=2^{a}$. Now

$$
[L: K(\sqrt{-1})][K(\sqrt{-1}): K]=[L: K]=2^{a}
$$

Therefore $[L: K(\sqrt{-1})]=2^{a-1}$. We claim that $a=1$.
If not, set $G_{1}:=\operatorname{Gal}(L / K(\sqrt{-1}))$, let S_{1} be a subgroup of G_{1} of index 2 , and $F_{1}:=\operatorname{Fix}\left(S_{1}\right)$. So

$$
\left[F_{1}: K(\sqrt{-1})\right]=\left[G_{1}: S_{1}\right]=2
$$

and F_{1} is a quadratic extension of $K(\sqrt{-1})$. But every element of $K(\sqrt{-1})$ is a square by Lemma 2.1, contradiction.

Notation. We denote by \bar{K} the algebraic closure of a field K, i.e. the smallest algebraically closed field containing K.

We have just proved that if K is real closed then $\bar{K}=K(\sqrt{-1})$.

3. FACtorization in $R[\mathrm{X}]$

Corollary 3.1. (Irreducible elements in $R[\mathrm{x}]$ and prime factorizaction in $R[\mathrm{x}]$). Let R be a real closed field, $f(\mathrm{x}) \in R[\mathrm{x}]$. Then
(1) if $f(\mathrm{x})$ is monic and irreducible then

$$
f(\mathrm{x})=\mathrm{x}-a \quad \text { or } \quad f(\mathrm{x})=(\mathrm{x}-a)^{2}+b^{2}, \quad b \neq 0
$$

$$
\begin{equation*}
f(\mathrm{x})=d \prod_{i=1}^{n}\left(\mathrm{x}-a_{i}\right) \prod_{j=1}^{m}\left(\mathrm{x}-d_{j}\right)^{2}+b_{j}^{2}, \quad b_{j} \neq 0 \tag{2}
\end{equation*}
$$

Proof. Let $f(\mathrm{x}) \in R[\mathrm{x}]$ be monic and irreducible. Then $\operatorname{deg}(f) \leqslant 2$.
Suppose not, and let $\alpha \in \bar{R}$ a root of $f(\mathrm{x})$. Then

$$
[R(\alpha): R]=\operatorname{deg}(f)>2
$$

On the other hand, by 2.2

$$
[R(\alpha): R] \leqslant[\bar{R}: R]=2
$$

contradiction.

If $\operatorname{deg}(f)=1$, then $f(\mathrm{x})=\mathrm{x}-a$, for some $a \in R$.
If $\operatorname{deg}(f)=2$, then $f(\mathrm{x})=\mathrm{x}^{2}-2 a \mathrm{x}+c=(\mathrm{x}-a)^{2}+\left(c-a^{2}\right)$, for some $a, c \in R$.

We claim that $c-a^{2}>0$. If not,

$$
c-a^{2} \leqslant 0 \Rightarrow-\left(c-a^{2}\right) \geqslant 0 \Rightarrow a^{2}-c \geqslant 0
$$

the discriminant $4\left(a^{2}-c\right) \geqslant 0, f(\mathrm{x})$ has a root in R and factors, contradiction.

Therefore $\left(c-a^{2}\right) \in R^{2}$ and there is $b \in R$ such that $\left(c-a^{2}\right)=b^{2} \neq 0$.

Corollary 3.2. (Zwischenwertsatz : Intermediate value Theorem) Let R be a real closed field, $f(\mathrm{x}) \in R[\mathrm{x}]$. Assume $a<b \in R$ with $f(a)<0<f(b)$. Then $\exists c \in R, a<c<b$ such that $f(c)=0$.
Proof. By previous Corollary,

$$
\begin{aligned}
f(\mathrm{x}) & =d \prod_{i=1}^{n}\left(\mathrm{x}-a_{i}\right) \prod_{j=1}^{m}\left(\mathrm{x}-d_{j}\right)^{2}+b_{j}^{2} \\
& =d \prod_{i=1}^{n} l_{i}(\mathrm{x}) q(\mathrm{x})
\end{aligned}
$$

where $l_{i}(\mathrm{x}):=\mathrm{x}-a_{i}, \forall i=1, \ldots, n$ and $q(\mathrm{x}):=\prod_{j=1}^{m}\left(\mathrm{x}-d_{j}\right)^{2}+b_{j}^{2}$.
We claim that there is some $k \in\{1, \ldots, n\}$ such that $l_{k}(a) l_{k}(b)<0$. Since

$$
\operatorname{sign}(f)=\operatorname{sign}(d) \prod_{i=1}^{n} \operatorname{sign}\left(l_{i}\right) \operatorname{sign}(q) \quad \text { and } \quad \operatorname{sign}(q)=1
$$

if we had that

$$
\operatorname{sign}\left(l_{i}(a)\right)=\operatorname{sign}\left(l_{i}(b)\right) \quad \forall i \in\{1, \ldots, n\}
$$

we would have

$$
\operatorname{sign}(f(a))=\operatorname{sign}(f(b))
$$

in contradiction with $f(a) f(b)<0$.
For such a k,

$$
l_{k}(a)<0<l_{k}(b)
$$

i.e.

$$
a-a_{k}<0<b-a_{k}
$$

and $\left.c:=a_{k} \in\right] a, b[$ is a root of $f(\mathrm{x})$.

Corollary 3.3. (Rolle) Let R be a real closed field, $f(\mathrm{x}) \in R[\mathrm{x}]$, Assume that $a, b \in R, a<b$ and $f(a)=f(b)=0$. Then $\exists c \in R, a<c<b$ such that $f^{\prime}(c)=0$.

