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Let R be a real closed field (for all this lecture).

1. COUNTING ROOTS IN AN INTERVAL

Definition 1.1. Let f(x) € R[x], a € R,

f(x) = (x=a)"h(x)

with m € N, m > 1 and h(a) # 0 (i.e. (x — a) is not a factor of h(x)).
We say that m is the multiplicity (Vielfachheit) of f at a.

Corollary 1.2. (Generalized Intermediate Value Theorem: Verstarkung Zwis-
chenwertsatz). Let f(x) € R[x|; a,b € R, a < b, f(a)f(b) < 0 (i.e.
fla) <0 < f(b) or f(b) < 0 < f(a)). Then the number of roots of f(x)
counting multiplicities in the interval |a,b[ C R is odd (in particular, f has
a root in ]a,b[).

Proof. By Corollary 3.1 of 5th lecture (3/11/09), we can write

with g(x) = dq(x), where d € R is the leading coefficient of f(x) and ¢(x) is
the product of the irreducible quadratic factors of f(x).

Note that g(x) has constant sign on R (i.e. g(r) > 0Vr € Ror g(r) <
0 Vr € R). Without loss of generality, we can suppose d = 1 (and so g(x) is
positive everywhere).

Set Vi=1,...,n

{Li(x) = (x—¢)™

li(x) :=x —¢.

If 1;(x) changes sign in ]a, b[ we must have [;(a) < 0 < [;(b). Note that L;(x)
changes sign in ]a, b[ if and only if /;(x) does and m; is odd.
In particular if L;(x) changes sign we must have L;(a) < 0 < L;(b) as well.
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Let us count the number of distinct ¢ € {1,...,n} for which L;(a) < 0 <
Li(b). We claim that this number must be odd. If not, we get an even
number of i such that L;(a)L;(b) < 0, so their product would be positive, in
contradiction with the fact that f(a)f(b) < 0.

Set

|{i€{1,...,n}:Li(a)<0<Li(b)}|:M21 odd.
Say these are Ly, ..., Lys. So the total number of roots of f in ]a, b counting
multiplicity is
Z:=m1+~--—|—mM-
Since m; is odd Vi = 1,..., M and M is odd, it follows that ) is odd as

well.
O

2. BOUNDING THE ROOTS

Corollary 2.1. Let f(x) € R[x], f(x) = dx™ + dpp_1x™ "1+ +dy,d # 0.
Set

Then

(1) a€ R, fla)=0 = |a| < D;
(i.e. f has no root in | — oo, —D] U [D + o] )

(ii) y € [D, +oo[ = sign(f(y)) = sign(d);

(iii) y € | — 00, —D[ = sign(f(y)) = (—1)™ sign(d).
Proof. Wlog assume 3i such that d; # 0.
(1) For every i =0,...,m — 1 set b; := % and compute for |y| > D:
F) =dy™ (U4 by 4+ boy™™).
Now
by -+ oy < (b -+ [o)D T < L

(ii) If y > D then f(y) = d[][(y — a;)"™q(y) where deg(q) is even and
y —a; > 0.

(797) If y < —D then (y —a;)™ < 0 if and only if m; is odd. Moreover m
is odd if and only if > m; is odd.
O

Corollary 2.2. (Rolle’s Satz) Let f(x) € R[x], a < b € R such that f(a) =
f(b). Then there is c € R, a < ¢ < b such that f'(c) = 0.
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Proof. We can suppose f(a) = f(b) = 0 (otherwise if f(a) = f(b) = k # 0,
we can consider the polynomial (f — k)(x)).
We can also assume that f(x) has no root in Ja, b[. So

f(x) = (x—a)"(x = b)"g(x),

where g(x) has no root in [a, b], and by Corollary 1.2 (IVT) g(x) has constant
sign in [a,b]. Compute

where

91(x) := m(x = b)g(x) + n(x — a)g(x) + (x — a)(x — b)g (x).
Therefore

Since g1(a)g1(b) < 0, by the Intermediate Value Theorem (1.2) ¢1(x) has
a root in Ja, b and so does f’(x). O

Corollary 2.3. (Mittelwertsatz: Mean Value Theorem) Let f(x) € RIx],
a<be R. Then there isc€ R, a < ¢ < b such that

since F(a) = F(b). O

Corollary 2.4. (Monotonicity Theorem). Let f(x) € R[x], a < b€ R. If
1! is positive (respectively negative) on la,b|, then f is strictly increasing
(respectively strictly decreasing) on |a, b].

Proof. If a < a1 < by < b, by the Mean Value Theorem there is some ¢ € R,
a1 < ¢ < by such that

Fb1) — f(a1)

b1 — a1

file) =
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3. CHANGES OF SIGN

Definition 3.1.
(1) Let (c1,...,¢pn) a finite sequence in R. An index i € {1,...,n} is a
change of sign (Vorzeichenwechsel) if cjci41 < 0.

(73) Let (c1,...,cn) a finite sequence in R. After we have removed all
zero’s by the sequence, we define
Var(ci,...,cn) = [{i € {1,...,n} : i is a change of sign}|
= ’{Z S {1, .. .,n} 1CiCi1 < O}‘
Theorem 3.2. (Lemma von Descartes) Let f(x) = apx" + -+ + ap € R[x],
an #0. Then
{a € R:a>0and f(a) =0} < Var(ap,...,a1,ap).

Proof. By induction on n = deg(f). The case n = 1 is obvious, so suppose
n > 1. Wlog assume that ag # 0.

Let » > 0 be the smallest positive index such that a, # 0. By induction
applied to

f'(x) = napx™ L+ 4 ra,x"L
we know that there are Var(nay,...,ra,) = Var(ay,...,a,) many positive
roots of f/. Set ¢ := the smallest such positive root of f’ (by convention
¢ 1= 400 if none exists)
Apply Rolle’s Theorem: f has at most 1+ Var(ay,...,a,) positive roots.

Case 1. If the number of positive roots of f is strictly less than 1 +
Var(an, - .., a,), then the number of positive roots of f is < Var(ay,...,a,) <
Var(ay,...,ar,a9) and we are done.

Case 2. Assume f has exactly 1 4+ Var(ay,...,a,) positive roots. We
claim that in this case

1+ Var(ay,...,a,) = Var(ay, ..., ar,ap).

We observe that f has a root a in |0, ¢[.
For 0 < z < ¢ we have that sign(f’'(z)) = sign(a,) # 0, so f is strictly
monotone in the interval [0, ¢] (Monotonicity Theorem). So

ar >0 = ap=f(0) < f(a) =0 = ap <0,
ar <0 = ap=f(0)> f(a) =0 = ap > 0.

In both cases aga, < 0 and the claim is established. O

Corollary 3.3. Let f(x) € R[x] a polynomial with m monomials. Then f
has at most 2m — 1 roots in R.

Proof. Consider f(x) and f(—x). By previous Theorem they have both at
most m — 1 strictly positive roots in R. So f(x) has at most 2m — 2 non-zero
roots and therefore at most 2m — 1 roots in R. O



