REAL ALGEBRAIC GEOMETRY LECTURE NOTES (09: 17/11/09 - BEARBEITET 26/11/18)

SALMA KUHLMANN

Contents

1.	Basic version of Tarski-Seidenberg	1
2.	Tarski Transfer Principle I	2
3.	Tarski Transfer Principle II	3
4.	Tarski Transfer Principle III	3
5.	Tarski Transfer Principle IV	3
6.	Lang's Homomorphism Theorem	4

1. Basic version of Tarski-Seidenberg

Basic version: Let (R, \leq) be a real closed field. We are interested in a system of equations and inequalities (Gleichungen und Ungleichungen) for $\underline{X} = (X_1, \dots, X_n)$ of the form

$$S(\underline{X}) := \begin{cases} f_1(\underline{X}) \lhd_1 0 \\ \vdots \\ f_k(\underline{X}) \lhd_k 0 \end{cases}$$

where $\forall i = 1, ..., k \ \, \triangleleft_i \in \{ \geqslant, >, =, \neq \}$ and $f_i(\underline{X}) \in \mathbb{Q}[\underline{X}]$ or $f_i(\underline{X}) \in R[\underline{X}]$. We say that $S(\underline{X})$ is a system of polynomial equalities and inequalities with coefficients in \mathbb{Q} (or with coefficients in R) in n variables.

Theorem 1.1. (Tarski-Seidenberg Theorem: Basic Version) Let $S(\underline{T};\underline{X})$ be a system with coefficients in \mathbb{Q} in m+n variables, with $\underline{T}=(T_1,\ldots,T_m)$ and $\underline{X} = (X_1, \dots, X_n)$. Then there exist $S_1(\underline{T}), \dots, S_l(\underline{T})$ systems in m variables and coefficients in \mathbb{Q} such that:

for every real closed field R and every $\underline{t} = (t_1, \ldots, t_m) \in \mathbb{R}^m$ the system $S(\underline{t};\underline{X})$ of polynomial equalities and inequalities in n variables and coefficients in R obtained by substituting T_i with t_i in $S(\underline{T},\underline{X})$ for every i= $1, \ldots, m$, has a solution $\underline{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$ if and only if $\underline{t} = (t_1, \ldots, t_m) \in \mathbb{R}^n$ R^m is a solution in R for one of the systems $S_1(\underline{T}), \ldots, S_l(\underline{T})$.

Example 1.2. Let m=3 and n=1, so $\underline{T}=(T_1,T_2,T_3)$ and $\underline{X}=X$, and

$$S(\underline{T}, \underline{X}) := \left\{ T_1 X^2 + T_2 X + T_3 = 0 \right\}$$

Let R be a real closed field and $(t_1, t_2, t_3) \in \mathbb{R}^3$. Then $S(\underline{t}; X)$ has a solution in R if and only if

$$(t_1 \neq 0 \ \land \ t_2^2 - 4t_1t_3 \geqslant 0) \quad \lor \quad (t_1 = 0 \ \land \ t_2 \neq 0) \quad \lor \quad (t_1 = t_2 = t_3 = 0)$$

$$| \qquad \qquad | \qquad \qquad |$$

$$S_1(T_1, T_2, T_3) \qquad \qquad S_2(T_1, T_2, T_3) \qquad \qquad S_3(T_1, T_2, T_3)$$

Concise version:

$$\forall \underline{T} [(\exists \underline{X} : S(\underline{T}; \underline{X})) \Leftrightarrow (\bigvee_{i=1}^{l} S_i(\underline{T}))].$$

Remark 1.3. The proof is by induction on n.

The case n=1 is the heart of the proof and we will show it later.

For now, let us just convince ourselves that the induction step is straightforward.

Assume n > 1, so

$$S(\underline{T}; X_1, \dots, X_n) = S(\underline{T}, X_1, \dots, X_{n-1}; X_n).$$

By case n = 1 we have finitely many systems $S_1(\underline{T}, X_1, \dots, X_{n-1}), \dots, S_l(\underline{T}, X_1, \dots, X_{n-1})$ such that

for any real closed field R and any $(t_1, \ldots, t_m, x_1, \ldots, x_{n-1}) \in R^{m+n-1}$ we have

$$\exists X_n : S(t_1, \dots, t_m, x_1, \dots, x_{n-1}; X_n) \longleftrightarrow \bigvee_{i=1}^l S_i(t_1, \dots, t_m, x_1, \dots, x_{n-1}).$$

By induction hypothesis on n-1:

for every fixed $i, 1 \leq i \leq l$, \exists systems $S_{ij}(\underline{T}), j = 1, ..., l_i$ such that: for each real closed field R and each $\underline{t} \in R^m$ the system

$$S_i(t; X_1, \dots, X_{n-1})$$

has a solution $(x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ if and only if \underline{t} is a solution for one of the systems $S_{ij}(\underline{T})$; $j = 1, \ldots, l_i$.

Therefore for any real closed field R and any $t \in R^m$

$$S(\underline{t}; X_1, \dots, X_n)$$
 has a solution $\underline{x} \in \mathbb{R}^n$ if and only if

 \underline{t} is a solution to one of the systems $\{S_{ij}(\underline{T}); i=1,\ldots,l, j=1,\ldots,l_i\}$

2. Tarski Transfer Principle I

Theorem 2.1. Let $S(\underline{T},\underline{X})$ be a system with coefficients in \mathbb{Q} in m+n variables. Let (K,\leqslant) be an ordered field. Let R_1,R_2 be two real closed extensions of (K,\leqslant) . Then for every $\underline{t} \in K^m$, the system $S(\underline{t},\underline{X})$ has a solution $\underline{x} \in R_1^n$ if and only if it has a solution $\underline{x} \in R_2^n$.

Proof. Let $\underline{t} \in K^m \subseteq R_1^m \cap R_2^m$. Then there are systems $S_i(\underline{T})$ (i = 1, ..., l) with coefficients in \mathbb{Q} and variables $T_1, ..., T_m$ such that

$$\exists \, \underline{x} \in R_1 : S(\underline{t},\underline{x}) \iff \underline{t} \text{ satisfies } \bigvee_{i=1}^l S_i(\underline{T}) \iff \exists \, \underline{x} \in R_2 : S(\underline{t},\underline{x}).$$

3. Tarski Transfer Principle II

Theorem 3.1. Let (K, \leq) be an ordered field, R_1, R_2 two real closed extensions of (K, \leq) . Then a system of polynomial equations and inequalities of the form

$$S(\underline{X}) := \begin{cases} f_1(\underline{X}) \lhd_1 0 \\ \vdots \\ f_k(X) \lhd_k 0 \end{cases}$$

where $\forall i = 1, ..., k \ \, \triangleleft_i \in \{ \geqslant, >, =, \neq \} \ \, and \, f_i(\underline{X}) \in K[X_1, ..., X_n],$

has a solution $\underline{x} \in R_1^n \iff it \text{ has a solution } \underline{x} \in R_2^n$.

Proof. Let t_1, \ldots, t_m be the coefficients of the polynomials f_1, \ldots, f_k , listed in some fixed order. Replacing the coefficients t_1, \ldots, t_m by variables T_1, \ldots, T_m yields a system $\sigma(\underline{T}, \underline{X})$ in m + n variables with coefficients in \mathbb{Q} (in fact in \mathbb{Z}) for which

$$\sigma(t_1,\ldots,t_m,\underline{X})=S(\underline{X}).$$

Now we can apply Tarski Transfer I.

4. Tarski Transfer Principle III

Theorem 4.1. Suppose that $R \subseteq R_1$ are real closed fields. Then a system of polynomial equations and inequalities with coefficients in R

$$S(\underline{X}) := \begin{cases} f_1(\underline{X}) \lhd_1 0 \\ \vdots \\ f_k(\underline{X}) \lhd_k 0 \end{cases}$$

where $\forall i = 1, ..., k \ \, \triangleleft_i \in \{ \geqslant, >, =, \neq \} \ \, and \, \, f_i(\underline{X}) \in R[X_1, ..., X_n]$

has a solution $\underline{x} \in R_1^n \iff it \text{ has a solution } \underline{x} \in R^n$.

Proof. Apply Tarski Transfer II with $K = R_2 = R$.

5. Tarski Transfer Principle IV

Theorem 5.1. Let R be a real closed field and (F, \leq) an ordered field extension of R. Then a system of polynomial equations and inequalities of the form

$$S(\underline{X}) := \begin{cases} f_1(\underline{X}) \lhd_1 0 \\ \vdots \\ f_k(\underline{X}) \lhd_k 0 \end{cases}$$

where $\forall i = 1, ..., k \ \, \triangleleft_i \in \{ \geqslant, >, =, \neq \} \ \, and \, f_i(\underline{X}) \in R[X_1, ..., X_n]$

has a solution $\underline{x} \in F^n \iff it \text{ has a solution } \underline{x} \in R^n$.

Proof. Let R_1 be the real closure of the ordered field (F, \leq) and apply Tarski Transfer III.

6. Lang's Homomorphism Theorem

Corollary 6.1. Suppose R and R_1 are real closed fields, $R \subseteq R_1$. Then a system of polynomial equations of the form

$$S(\underline{X}) := \begin{cases} f_1(\underline{X}) = 0 \\ \vdots \\ f_k(\underline{X}) = 0 \end{cases} \qquad f_i(\underline{x}) \in R[X_1, \dots, X_n]$$

has a solution $\underline{x} \in R_1^n$ if and only if it has a solution $\underline{x} \in R^n$.

Proof. Apply Tarski Transfer III.

The previous Corollary is equivalent to the following:

Theorem 6.2. (Homomorphism Theorem I). Let R and R_1 be real closed fields, $R \subseteq R_1$. For any ideal $I \subseteq R[\underline{X}]$, if there exists an R-algebra homomorphism

$$\varphi \colon R[\underline{X}]/I \longrightarrow R_1$$

then there exists an R-algebra homomorphism

$$\psi \colon R[\underline{X}]/I \longrightarrow R.$$

Proof. By Hilbert's Basis Theorem, I is finitely generated, say $I = \langle f_1, \dots, f_k \rangle$, with $f_1, \dots, f_k \in R[\underline{X}]$. Consider the system

$$S(\underline{X}) := \begin{cases} f_1(\underline{X}) = 0 \\ \vdots \\ f_k(\underline{X}) = 0 \end{cases}$$

Claim. There is a bijection

 $\{\underline{x} \in R_1^n \text{ solution to } S(\underline{X})\} \longleftrightarrow \{\varphi \colon R[\underline{X}]/I \to R_1 \text{ } R\text{-algebra homomorphism}\}$

Proof of the claim:

Let $\underline{x} \in R_1^n$ be a solution to $S(\underline{X})$; then the evaluation homomorphism

$$\varphi \colon R[\underline{X}]/I \longrightarrow R_1$$

$$f+I \mapsto f(x)$$

is well-defined and is an R-algebra homomorphism.

Conversely: assume that

$$\varphi \colon R[X]/I \longrightarrow R_1$$

is an R-algebra homomorphism. Then for $\underline{e} = (e_1, \dots, e_n)$ and $f = \sum \underline{a}_e \underline{X}^e = \sum a_{e_1 \dots e_n} X_1^{e_1} \dots X_n^{e_n} \in R[\underline{X}],$

$$\varphi(f+I) = \sum \underline{a}_e \varphi(X_1+I)^{e_1} \cdots \varphi(X_n+I)^{e_n} = f(\varphi(X_1+I), \dots, \varphi(X_n+I)).$$

In other words set $(x_1, \ldots, x_n) \in R_1^n$ to be defined by $x_1 := \varphi(X_1 + I), \ldots, x_n := \varphi(X_n + I)$, then (x_1, \ldots, x_n) is a solution to $S(\underline{X})$ and the R-algebra homomorphism φ is indeed given by point evaluation at $\underline{x} = (x_1, \ldots, x_n) \in R_1^n$.

Now apply Corollary 6.1.