REAL ALGEBRAIC GEOMETRY LECTURE NOTES (13: 01/12/2009 - BEARBEITET 6/12/18)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

Main Lemma. For any real closed field R and every sequence of polynomials $f_1, \ldots, f_s \in R[X]$ of degrees $\leq m$, with f_s nonconstant and none of the f_1, \ldots, f_{s-1} identically zero, we have

 $SIGN_R(f_1,\ldots,f_s) \in W_{s,m}$ is completely determined by

 $SIGN_R(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s) \in W_{2s,m}$, where f'_s is the derivative of f_s , and g_1, \ldots, g_s are the remainders of the euclidean division of f_s by $f_1, \ldots, f_{s-1}, f'_s$, respectively.

Equivalently, the map $\varphi: W_{2s,m} \longrightarrow W_{s,m}$

$$SIGN_R(f_1,\ldots,f_{s-1},f_s',g_1,\ldots,g_s) \longmapsto SIGN_R(f_1,\ldots,f_s)$$

is well defined.

In other words, for any $(f_1, ..., f_s)$, $(F_1, ..., F_s) \in R[X]$, $SIGN_R(f_1, ..., f_{s-1}, f'_s, g_1, ..., g_s) = SIGN_R(F_1, ..., F_{s-1}, F'_s, G_1, ..., G_s)$ $\Rightarrow SIGN_R(f_1, ..., f_s) = SIGN_R(F_1, ..., F_s)$.

Proof. Assume $w = SIGN_R(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s)$ is given.

Let $x_1 < \ldots < x_N$, with $N \le 2sm$, be the roots in R of those polynomials among $f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s$ that are not identically zero. Extract from these the subsequence $x_{i_1} < \ldots < x_{i_M}$ of the roots of the polynomials $f_1, \ldots, f_{s-1}, f'_s$. By convention, let $x_{i_0} := x_0 = -\infty$; $x_{i_{M+1}} := x_{N+1} = +\infty$. Note that the sequence $x_{i_1} < \ldots < x_{i_M}$ depends only on w.

For k = 1, ..., M one of the polynomials $f_1, ..., f_{s-1}, f'_s$ vanishes at x_{i_k} . This allows to choose a map (determined by w)

$$\theta: \{1, \dots, M\} \to \{1, \dots, s\}$$

such that $f_s(x_{i_k}) = g_{\theta(k)}(x_{i_k})$

(This goes via polynomial division $f_s = f_{\theta(k)}q_{\theta(k)} + g_{\theta(k)}$, where $f_{\theta(k)}(x_{i_k}) = 0$).

Claim I. The existence of a root of f_s in an interval $]x_{i_k}, x_{i_{k+1}}[$, for $k = 0, \ldots, M$ depends only on w.

Proof of Claim I.

Case 1: f_s has a root in $]-\infty, x_{i_1}[$ (if $M \neq 0$) if and only if $sign(f'_s(]-\infty, x_1[])sign(g_{\theta(1)}(x_{i_1})) = 1$, equivalently iff

 $sign(f'_s(]-\infty,x_1[])) = signf_s(x_{i_1}).$

- (\Leftarrow) We want to show that if $sign(f'_s(\]-\infty,x_1[\))=signf_s(x_{i_1}),$ then f_s has a root in $]-\infty,x_{i_1}[$. Suppose on contradiction that f_s has no root in $]-\infty,x_{i_1}[$, then $signf_s$ must be constant and nonzero on $]-\infty,x_{i_1}]$, so we get $0 \neq signf_s(\]-\infty,x_1[\)=signf_s(\]-\infty,x_{i_1}]$) $=signf_s(x_{i_1})=signf'_s(\]-\infty,x_{i_1}[\)$ $\Rightarrow signf_s(\]-\infty,x_{i_1}[\)=signf'_s(\]-\infty,x_{i_1}[\)$, a contradiction [because on $]-\infty,-D[\ :\ signf(x)=(-1)^m sign(d)$ for $f=dx^m+\ldots+d_0$ and $signf'(x)=(-1)^{m-1} sign(md)$ for $f'=mdx^{m-1}+\ldots$, see Corollary 2.1 of lecture 6 (05/11/09)].
- (\Rightarrow) Assume that f_s has a root (say) $x \in]-\infty, x_{i_1}[$. Note that $sign f_s(x_{i_1}) \neq 0$ [otherwise $f_s(x_{i_1}) = f(x_{i_1}) = 0$, so (by Rolle's theorem) f_s' has a root in $]x, x_{i_1}[$ and the only possibility is $x_1 \in]x, x_{i_1}[$ (by our listing), but then $x_1 = x_{i_1}$, a contradiction]. Note also that f_s cannot have two roots (counting multiplicity) in $]-\infty, x_{i_1}[$ [otherwise f_s' will be forced to have a root in $]-\infty, x_{i_1}[$, a contradiction as before].

Sc

$$-sign f_s(] - \infty, x[) = sign f_s(] x, x_{i_1}]) = sign f_s(x_{i_1}),$$

also (by same argument as before)

$$-signf_s(]-\infty,x[])=signf_s'(]-\infty,x_1[]),$$

therefore, we get

$$signf'_{s}(]-\infty, x_{1}[]) = signf_{s}(x_{i_{1}}).$$

Case 2: Similarly one proves that: f_s has a root in $]x_{i_M}, +\infty[$ (if $M \neq 0$) if and only if

$$sign(f'_s(\]x_N, +\infty[\))sign(g_{\theta(M)}(x_{i_M})) = -1,$$
 (i.e. iff $signf'_s(\]x_N, +\infty[\) = -signf_s(x_{i_M}) \neq 0$).

Case 3: f_s has a root in $]x_{i_k}, x_{i_{k+1}}[$, for $k = 1, \ldots, M-1$, if and only if $sign(g_{\theta(k)}(x_{i_k}))sign(g_{\theta(k+1)}(x_{i_{k+1}})) = -1$,

equivalently iff

$$sign f_s(x_{i_k}) = -sign f_s(x_{i_{k+1}}).$$

(Proof is clear because if f_s has a root in $]x_{i_k}, x_{i_{k+1}}[$, then this root is of multipilicty 1 and therefore a sign change must occur.)

<u>Case 4:</u> f_s has exactly one root in $]-\infty,+\infty[$ if M=0.

Claim II. $SIGN_R(f_1, ..., f_s)$ depends only on w.

Proof of Claim II.

Notation: Let $y_1 < \ldots < y_L$, with $L \leq sm$, be the roots in R of the polynomials f_1, \ldots, f_s . As before, let $y_0 := -\infty, y_{L+1} := +\infty$.

Set
$$I_k :=]y_k, y_{k+1}[, k = 0, \dots, L.$$

Define

$$\rho \ : \ \{0,\dots,L+1\} \ \longrightarrow \ \{0,\dots,M+1\} \cup \{(k,k+1) \mid k=0,\dots,M\}$$

$$l \longmapsto \begin{cases} k & \text{if } y_l = x_{i_k}, \\ (k, k+1) & \text{if } y_l \in]x_{i_k}, x_{i_{k+1}}[\end{cases}$$

Note that by Claim I, L and ρ depends only on w. So, to prove claim II it is enough to show that $SIGN_R(f_1, \ldots, f_s)$ depends only on ρ and w.

$$SIGN_{R}(f_{1},...,f_{s}) := \begin{pmatrix} signf_{1}(I_{0}) & signf_{1}(y_{1}) & ... & signf_{1}(y_{L}) & signf_{1}(I_{L}) \\ \vdots & \vdots & & \vdots & \vdots \\ signf_{s-1}(I_{0}) & signf_{s-1}(y_{1}) & ... & signf_{s-1}(y_{L}) & signf_{s-1}(I_{L}) \\ signf_{s}(I_{0}) & signf_{s}(y_{1}) & ... & signf_{s}(y_{L}) & signf_{s}(I_{L}) \end{pmatrix}$$

is an $s \times (2L+1)$ matrix with coefficients in $\{-1,0,+1\}$.

Case 1: j = 1, ..., s - 1

For $l \in \{0, \dots, L+1\}$ we have

- if $\rho(l) = k \Rightarrow sign(f_i(y_l)) = sign(f_i(x_{ik})),$
- if $\rho(l) = (k, k+1) \Rightarrow sign(f_j(y_l)) = sign(f_j(]x_{i_k}, x_{i_{k+1}}[])$.

So, $sign(f_j(y_l))$ is known from w and ρ , for all j = 1, ..., s-1 and $l \in \{0, ..., L+1\}$.

We also have

• if
$$\rho(l) = k$$
 or $(k, k+1) \Rightarrow sign(f_j(]y_l, y_{l+1}[]) = sign(f_j(]x_{i_k}, x_{i_{k+1}}[]))$.

So, $sign(f_j(]y_l, y_{l+1}[])$ is known from w and ρ , for all j = 1, ..., s-1 and $l \in \{0, ..., L+1\}$.

Thus one can reconstruct the first s-1 rows of $SIGN_R(f_1,...,f_s)$ from w.

Case 2: j = s

For $l \in \{0, \dots, L+1\}$ we have

- if $\rho(l) = k \Rightarrow sign(f_s(y_l)) = sign(g_{\theta(k)}(x_{i_k}))$,
- if $\rho(l) = (k, k+1) \Rightarrow sign(f_s(y_l)) = 0$.

So, $sign(f_s(y_l))$ is known from w and ρ , for all $l \in \{0, \ldots, L+1\}$ and therefore can also be reconstructed from w.

Now remains the most delicate case that concerns $sign(f_s(]y_l, y_{l+1}[])$: For $l \in \{0, ..., L+1\}$ we have

• if $l \neq 0$, $\rho(l) = k \Rightarrow$ $sign(f_s(]y_l, y_{l+1}[]) = \begin{cases} sign(g_{\theta(k)}(x_{i_k})) & \text{if it is } \neq 0, \\ sign(f'_s(]x_{i_k}, x_{i_{k+1}}[])) & \text{otherwise.} \end{cases}$

This is because $(\rho(l) = k \text{ if } y_l = x_{i_k}, \text{ so})$:

- if $g_{\theta(k)}(x_{i_k}) = f_s(x_{i_k}) \neq 0$, then by continuity sign is constant, and
- if $g_{\theta(k)}(x_{i_k}) = f_s(x_{i_k}) = 0$, then on $]x_{i_k}, x_{i_{k+1}}[]$:

$$\begin{cases} f'_s \ge 0 \Rightarrow f_s(x_{i_k}) < f_s(y) \text{ for } y < x_{k+1}, \text{ so } f_s(y) > 0, \\ f'_s \le 0 \Rightarrow -f_s(x_{i_k}) < -f_s(y) \text{ for } y < x_{k+1}, \text{ so } f_s(y) < 0 \end{cases}$$

(using 6. Lecture, Cor. 2.4: In a real closed ordered field, if P is a nonconstant polynomial s.t. $P' \geq 0$ on [a,b], a < b, then P(a) < P(b).

• if $l \neq 0$, $\rho(l) = (k, k+1) \Rightarrow sign(f_s(]y_l, y_{l+1}[)) = sign(f'_s(]x_{i_k}, x_{i_{k+1}}[))$. [We argue as follows (noting that $\rho(l) = (k, k+1)$ if $y_l \in]x_{i_k}, x_{i_{k+1}}[$):

 $sign(f_s(]y_l, y_{l+1}[]))$ is constant so at any rate is equal to $sign(f_s(]y_l, x_{i_{k+1}}[]))$, now using the fact that $f_s(y_l) = 0$ and the same lemma (stated above) we get, for any $a \in [y_l, x_{i_{k+1}}[]]$:

$$\begin{cases} f'_s \ge 0 \Rightarrow f_s(y_l) < f_s(a), \text{ so } f_s(a) > 0, \\ f'_s \le 0 \Rightarrow -f_s(y_l) < -f_s(a), \text{ so } f_s(a) < 0 \end{cases}$$

i.e. f_s has same sign as f'_s .

• if $l = 0 \Rightarrow sign(f_s(]-\infty, y_1[]) = sign(f_s'(]-\infty, x_1[])$ (as before). \square