REAL ALGEBRAIC GEOMETRY LECTURE NOTES (13: 01/12/2009 - BEARBEITET 10/12/18)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

Main Proposition. Let $f_{i}(\underline{T}, X):=h_{i, m_{i}}(\underline{T}) X^{m_{i}}+\ldots+h_{i, 0}(\underline{T})$ for $i=$ $1, \ldots, s$ be a sequence of polynomials in $n+1$ variables with coefficients in \mathbb{Z}, and let $m:=\max \left\{m_{i} \mid i=1, \ldots, s\right\}$. Let W^{\prime} be a subset of $W_{s, m}$. Then there exists a boolean combination $B(\underline{T})=S_{1}(\underline{T}) \vee \ldots \vee S_{p}(\underline{T})$ of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z}, such that, for every real closed field R and every $\underline{t} \in R^{n}$, we have

$$
\operatorname{SIGN}_{R}\left(f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)\right) \in W^{\prime} \Leftrightarrow B(\underline{t}) \text { holds true in } R \text {. }
$$

Proof. Without loss of generality, we assume that none of f_{1}, \ldots, f_{s} is identically zero and that $h_{i, m_{i}}(\underline{T})$ is not identically zero for $i=1, \ldots, s$. To every sequence of polynomials $\left(f_{1}, \ldots, f_{s}\right)$ associate the s-tuple $\left(m_{1}, \ldots, m_{s}\right)$, where $\operatorname{deg}\left(f_{i}\right)=m_{i}$. We compare these finite sequences by defining a strict order as follows:

$$
\sigma:=\left(m_{1}^{\prime}, \ldots, m_{t}^{\prime}\right) \prec \tau:=\left(m_{1}, \ldots, m_{s}\right)
$$

if there exists $p \in \mathbb{N}$ such that, for every $q>p$,
-the number of times q appears in $\sigma=$ the number of times q appears in τ, and
-the number of times p appears in $\sigma<$ the number of times p appears in τ. This order \prec is a total order ${ }^{1}$ on the set of finite sequences.

Example: let $m=\max \left(\left\{m_{1}, \ldots, m_{s}\right\}\right)=m_{s}$ (say), σ and τ be the sequence of degrees of the sequences $\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right)$ and $\left(f_{1}, \ldots, f_{s-1}, f_{s}\right)$ respectively, i.e.

$$
\begin{aligned}
& \sigma \rightsquigarrow\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right), \\
& \tau \rightsquigarrow\left(f_{1}, \ldots, f_{s-1}, f_{s}\right)
\end{aligned}
$$

[^0]then $\sigma \prec \tau$.
Let $m=\max \left\{m_{1}, \ldots, m_{s}\right\}$.
In particular using $p=m$ we have:
$\left(\operatorname{deg}\left(f_{1}\right), \ldots, \operatorname{deg}\left(f_{s-1}\right), \operatorname{deg}\left(f_{s}^{\prime}\right), \operatorname{deg}\left(g_{1}\right), \ldots, \operatorname{deg}\left(g_{s}\right)\right) \prec\left(\operatorname{deg}\left(f_{1}\right), \ldots, \operatorname{deg}\left(f_{s}\right)\right)$.
If $\underline{m=0}$, then there is nothing to show, since $S I G N_{R}\left(f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)\right)=$ $S I G N_{R}\left(h_{1,0}(\underline{t}), \ldots, h_{s, 0}(\underline{t})\right)$ [the list of signs of "constant terms"].

Suppose that $\underline{m \geq 1}$ and $m_{s}=m=\max \left\{m_{1}, \ldots, m_{s}\right\}$. Let $W^{\prime \prime} \subset W_{2 s, m}$ be the inverse image of $W^{\prime} \subset W_{s, m}$ under the mapping φ (as in main lemma). Set $W^{\prime \prime}=\left\{S I G N_{R}\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right) \mid S I G N_{R}\left(f_{1}, \ldots, f_{s}\right) \in W^{\prime}\right\}$.
-Case 1. By the main lemma, for every real closed field R and for every $\underline{t} \in R^{n}$ such that $h_{i, m_{i}}(\underline{t}) \neq 0$ for $i=1, \ldots, s$, we have

$$
\begin{gathered}
\operatorname{SIGN}_{R}\left(f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)\right) \in W^{\prime} \\
\Leftrightarrow \\
\operatorname{SIGN}_{R}\left(f_{1}(\underline{t}, X), \ldots, f_{s-1}(\underline{t}, X), f_{s}^{\prime}(\underline{t}, X), g_{1}(\underline{t}, X), \ldots, g_{s}(\underline{t}, X)\right) \in W^{\prime \prime},
\end{gathered}
$$

where f_{s}^{\prime} is the derivative of f_{s} with respect to X, and g_{1}, \ldots, g_{s} are the remainders of the euclidean division (with respect to X) of f_{s} by $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}$, respectively (multiplied by appropriate even powers of $h_{1, m_{1}}, \ldots, h_{s, m_{s}}$, respectively, to clear the denominators).
Now, the sequence of degrees in X of $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}$ is smaller than [the sequence of degrees in X of f_{1}, \ldots, f_{s} i.e.] $\left(m_{1}, \ldots, m_{s}\right)$ w.r.t. the order \prec.
-Case 2. At least one of $h_{i, m_{i}}(\underline{t})$ is zero
In this case we can truncate the corresponding polynomial f_{i} and obtain a sequence of polynomials, whose sequence of degrees in X is smaller than $\left(m_{1}, \ldots, m_{s}\right)$ w.r.t. the order \prec.

This completes the proof of main propostion and also proves the TarskiSeidenberg principle.

APPENDIX I: ORDER ON THE SET OF TUPLES OF INTEGERS

Set $N:=\bigcup_{n \in \mathbb{N}} \mathbb{N}^{n}$
We define on N an equivalence relation \sim :
for $\sigma:=\left(n_{1}, \ldots, n_{s}\right)$ and $\tau:=\left(m_{1}, \ldots, m_{t}\right)$ in N, we write $\sigma \sim \tau$ if and only if the following holds:
$s=t$ and there exists a permutation g of $\{1, \ldots, s\}$ such that $m_{i}=n_{g(i)}$ for all $i \in\{1, \ldots, s\}$.

For any $\sigma \in N$, the equivalence class of σ will be denoted by $[\sigma]$
For any $\sigma \in N$ and $p \in \mathbb{N}$, we set $f_{p}(\sigma):=$ (number of occurrences of p in σ).
For any $\sigma, \tau \in N$ and $p \in \mathbb{N}$ we define the property $\mathcal{P}(p, \sigma, \tau)$ by:
$\mathcal{P}(p, \sigma, \tau) \equiv\left(f_{p}(\sigma)<f_{p}(\tau)\right) \wedge\left(\forall q>p, f_{q}(\sigma)=f_{q}(\tau)\right)$.
Set $M:=N / \sim$
Note that if $\sigma^{\prime}, \tau^{\prime}$ are permutations of σ and τ, then $\mathcal{P}(p, \sigma, \tau)$ is equivalent to $\mathcal{P}\left(p, \sigma^{\prime}, \tau^{\prime}\right)$ for all $p \in \mathbb{N}$. This allows us to define a binary relation $<$ on M :
$[\sigma]<[\tau]$ if and only if there exists $p \in \mathbb{N}$ such that $\mathcal{P}(p, \sigma, \tau)$ is satisfied.

Remark 1

If $p \in \mathbb{N}$ satisfies $\mathcal{P}(p, \sigma, \tau)$, then for all $q \geq p, f_{q}(\sigma) \leq f_{q}(\tau)$

Proposition 1

$<$ defines a strict order on M.
Proof. We want to prove that $<$ is antisymmetric and transitive:
antisymmetry: Let $\sigma, \tau \in N$ such that $[\sigma]<[\tau]$; we want to show $[\tau] \nless[\sigma]$
Choose $p \in \mathbb{N}$ satisfying $\mathcal{P}(p, \sigma, \tau)$ and let $q \in \mathbb{N}$.
If $q \geq p$, then by remark 1 we have $f_{q}(\tau) \nless f_{q}(\sigma)$ so the first condition of $\mathcal{P}(q, \tau, \sigma)$ fails. Moreover, we have $f_{p}(\sigma)<f_{p}(\tau)$, so if $q<p$ the second condition of $\mathcal{P}(q, \tau, \sigma)$ fails.
Thus, $\mathcal{P}(q, \tau, \sigma)$ fails for every $q \in \mathbb{N}$, which proves $[\tau] \nless[\sigma]$.
transitivity: Let $\sigma, \tau, \rho \in N$ such that $[\rho]<[\sigma]$ and $[\sigma]<[\tau]$
Choose $p_{1}, p_{2} \in \mathbb{N}$ such that $\mathcal{P}\left(p_{1}, \rho, \sigma\right)$ and $\mathcal{P}\left(p_{2}, \sigma, \tau\right)$ hold.
Set $p:=\max \left(p_{1}, p_{2}\right)$.
If $q>p$, then in particular $q>p_{1}$ so $f_{q}(\rho)=f_{q}(\sigma)$; similarly, we have $q>p_{2}$ so $f_{q}(\sigma)=f_{q}(\tau)$ hence $f_{q}(\rho)=f_{q}(\tau)$.
Since $p \geq p_{1}, p_{2}$, we have by remark $1: f_{p}(\rho) \leq f_{p}(\sigma) \leq f_{p}(\tau)$. If $p=p_{1}$, the first inequality is strict, hence $f_{p}(\rho)<f_{p}(\tau)$; if $p=p_{2}$ then the second inequatlity is strict, which leads to the same conclusion.

This proves that $\mathcal{P}(p, \rho, \tau)$ is satisfied, hence $[\rho]<[\tau]$.

Proposition 2

The order $<$ is total on M
Proof. Let $\sigma=\left(n_{1}, \ldots, n_{s}\right), \tau=\left(m_{1}, \ldots, m_{t}\right) \in N$ be non-equivalent.
Set $A:=\left\{q \in\left\{n_{1}, \ldots, n_{s}, m_{1}, \ldots, m_{t}\right\} \mid f_{q}(\sigma) \neq f_{q}(\tau)\right\}$.
Note that $A=\varnothing$ if and only if $\sigma \sim \tau$, so by hypothesis we have $A \neq \varnothing$. Thus, we can define $p:=\max A$.

By definition of p, we have $f_{q}(\tau)=f_{q}(\sigma)$ for all $q>p$.
Moreover, since $p \in A$, we have $f_{p}(\sigma) \neq f_{p}(\tau)$.
If $f_{p}(\sigma)<f_{p}(\tau)$, then $\mathcal{P}(p, \sigma, \tau)$ is satisfied, so $[\sigma]<[\tau]$; if $f_{p}(\tau)<f_{p}(\sigma)$, then $\mathcal{P}(p, \tau, \sigma)$ is satisfied, so $[\tau]<[\sigma]$.

Note that we have an algorithm which determines how to order the pair (σ, τ) and gives us an apropriate p :
$p:=\max \left\{n_{1}, \ldots, n_{s}, m_{1}, \ldots, m_{t}\right\}$.
while $p \geq 0$:

$$
\begin{aligned}
& \text { if } f_{p}(\sigma)>f_{p}(\tau) \text { return }(\sigma>\tau, p) \\
& \text { if } f_{p}(\sigma)<f_{p}(\tau) \text { return }(\sigma<\tau, p) \\
& p:=p-1
\end{aligned}
$$

Proposition 3

 $(M,<)$ is well-ordered:Proof. For any $\sigma=\left(n_{1}, \ldots, n_{s}\right) \in N$, set $m_{\sigma}:=\max \left(n_{1}, \ldots, n_{s}\right)$. Since m_{σ} is left unchanged by permutation of σ, so we can define $m_{[\sigma]}:=m_{\sigma}$ unambiguously.

Note that for any $a, b \in M, m_{a}<m_{b}$ implies $a<b$. Indeed, if $m_{a}<m_{b}$, then for any $p>m_{b}$, we have $f_{p}(b)=0=f_{p}(a)$; moreover, $f_{m_{b}}(a)=0<f_{m_{b}}(b)$, which
proves that $\mathcal{P}\left(m_{b}, a, b\right)$ holds.
Let A be a non-empty subset of M and set $m:=\min \left\{m_{a} \mid a \in A\right\}$
We are going to prove by induction on m that A has a smallest element.
$\underline{\mathrm{m}=0}$: If $m=0$, then the set $A_{0}:=\{[\sigma] \in A \mid \sigma$ only contains zeros $\}$ is non-empty. Let a be the element of A_{0} of minimal length; then I claim that a is the smallest element of A.
Indeed: let $b \in A, b \neq a$.
If $b \in A_{0}$, then a and b both only contain zeros, so for all $p>0 f_{p}(a)=0=$ $f_{p}(b)$; moreover, by choice of a, we have $f_{0}(a)=\operatorname{length}(a)<\operatorname{length}(b)=$ $f_{0}(b)$. This proves that $\mathcal{P}(0, a, b)$ holds, hence $a<b$.
If $b \in A \backslash A_{0}$, then $m_{b}>0=m_{a}$ so $b>a$.
$\underline{m-1 \rightarrow m}$: Assume $m \geq 1$.
Set $B:=\left\{a \in A \mid m_{a}=m\right\}, n:=\min \left\{f_{m}(a) \mid a \in B\right\}$ and $C:=\{a \in B \mid$ $\left.f_{m}(a)=n\right\}$.
I claim that for any $c \in C$ and any $a \in A \backslash C, c<a$.
Indeed:

- if $a \in B \backslash C$, then by definition of C we have $f_{m}(c)<f_{m}(a)$. Since $a, c \in B$, it follows from the definition of B that m is the maximal element of both a and c, so that $f_{p}(a)=0=f_{p}(c)$ for all $p>m$. Thus, $\mathcal{P}(m, c, a)$ holds.
- If $a \notin B$, then by definition of B we have $m_{a}>m=m_{c}$, hence $a>c$.

Thus, it suffices to prove that C has a smallest element.
For any $c \in C$, we denote by c^{\prime} the element of M obtained from c by removing every occurrence of m. Set $C^{\prime}:=\left\{c^{\prime} \mid c \in C\right\}$. Since m is the maximal element of every $c \in C$, we have $m_{c^{\prime}} \leq m-1$ for every $c^{\prime} \in C^{\prime}$, hence $\min \left\{m_{c^{\prime}} \mid c^{\prime} \in C^{\prime}\right\} \leq m-1$. By induction hypothesis, C^{\prime} then has a smallest element $c^{\prime} . c$ is then the smallest element of C.

Note that there is a recursive algorithm which takes a subset of M as an argument and returns its smallest element:

```
smallest_element(A):
    m:= min{ma}|a\inA
```

$B:=\left\{a \in A \mid m_{a}=m\right\}$
$n=\min \left\{f_{m}(b) \mid b \in B\right\}$
$C:=\left\{b \in B \mid f_{m}(b)=n\right\}$
if C is a singleton then return its only element
$C^{\prime}:=\left\{c^{\prime} \mid c \in C\right\}$
$c^{\prime}:=$ smallest_element $\left(C^{\prime}\right)$
return the concatenation of c^{\prime} with $\underbrace{(m, \ldots, m)}_{n \text { times }}$

Proposition 4

The ordinal type of $(M,<)$ is ω^{ω}
Proof. For any $n \in \mathbb{N}$, set $A_{n}:=\left\{a \in M \mid m_{a}=n\right\}$.
We are going to build an isomorpism from ω^{ω} to M by induction. More precisely, we are going to build a sequence $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ of maps such that:

- for any $n \in \mathbb{N}, \phi_{n}$ is an isomorphism from ω^{n+1} to A_{n}.
- for any $n \in \mathbb{N}, \phi_{n+1}$ extends ϕ_{n}.

Taking $\phi:=\bigcup_{n \in \mathbb{N}} \phi_{n}$, we obtain an isomorphism ϕ from $\bigcup_{n \in \mathbb{N}} \omega^{n+1}=\omega^{\omega}$ to $\bigcup_{n \in \mathbb{N}} A_{n}=M$.
$\underline{n=0}$ Note that we have $(0)<(0,0)<(0,0,0)<(0,0,0,0)<\ldots$, so an isomorphism from ω to A_{0} is given by $n \mapsto \underbrace{(0,0, \ldots, 0)}_{n+1 \text { times }}$
$n \rightarrow n+1$ Assume we have an isomorphism $\phi_{n}: \omega^{n+1} \rightarrow A_{n}$. Remember that ω^{n+2} is the order type of $\left(\omega \times \omega^{n+1},<_{l e x}\right)$.
Define: $\phi_{n+1}(\alpha, \beta):=\phi_{n}(\beta) \wedge \underbrace{(n+1, \ldots, n+1)}_{\alpha \text { times }}$
(here ' \wedge ' means concatenation). This is an isomorphism from $\left(\omega \times \omega^{n+1},<_{l e x}\right)$ to A_{n+1}.

[^0]: ${ }^{1}$ This was a mistake in the book Real Algebraic Geometry of J. Bochnak, M. Coste, M.-F. Roy. For corrected argument, see Appendix I following this proof.

