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THE TARSKI-SEIDENBERG PRINCIPLE

Main Proposition. Let f;(T,X) 1= hjm,(L)X™ + ... 4+ hio(T) for ¢ =
1,...,s be a sequence of polynomials in n + 1 variables with coefficients in
Z, and let m := max{m;|i = 1,...,s}. Let W' be a subset of W,,. Then
there exists a boolean combination B(T) = S1(L) V...V .S,(T) of polynomial
equations and inequalities in the variables T with coefficients in Z, such that,
for every real closed field R and every t € R", we have

SIGNg(fi(t,X),..., fs(t, X)) € W < B(t) holds true in R.

Proof. Without loss of generality, we assume that none of fi,..., f, is
identically zero and that h; ,, () is not identically zero for i = 1,...,s. To
every sequence of polynomials (f, ..., fs) associate the s-tuple (m, ..., my),

where deg(f;) = m;. We compare these finite sequences by defining a strict
order as follows:

o= (my,...,my) <7 :=(m,...,m)

if there exists p € N such that, for every ¢ > p,

-the number of times ¢ appears in ¢ = the number of times ¢ appears in 7,
and

-the number of times p appears in ¢ < the number of times p appears in 7.

This order < is a total order ! on the set of finite sequences.

Ezample: let m = max ({my,...,ms}) = ms (say), o and 7 be the sequence
of degrees of the sequences (f1,..., fe_1, fur 15+, 9s) and (f1,..., fe_1, fs)
respectively, i.e.

g ~ (fl; e 7fs—17 f;,gl, . 798)7

T (froos foo1s o)

!This was a mistake in the book Real Algebraic Geometry of J. Bochnak, M. Coste,
M.-F. Roy. For corrected argument, see Appendix I following this proof.
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then o < 7.

Let m = max{my,...,ms}.
In particular using p = m we have:

(deg(f1)7 Ty deg(fsfl)vdeg(f;)vdeg(gl)v s 7d€g(gs)) = (deg(fl)u s 7d€g(f8))

If m = 0, then there is nothing to show, since SIGNg (f1 (t, X),..., fs(t, X)) =
SIGNg (h170(§), e hsjo(z_f)) [the list of signs of “constant terms"}.

Suppose that m > 1 and m, = m = maxz{my,...,my}. Let W' C Wasm be

the inverse image of W' C W,,, under the mapping ¢ (as in main lemma).
Set W' = {S[GNR(fl, . .,fsfl,fs,gl,. .. 795) ‘ S[GNR<f1, . '7fs) eWw }

-Case 1. By the main lemma, for every real closed field R and for every
t € R" such that h;,,,(t) #0fori=1,...,s, we have

SIGNR(f1<E7X)77fS(LX)) S W,
=

SIGNR(fl(LX)a N 'afs—l(taX)7fs/<§7X)7gl(taX)7 ce 7gs(taX)) € WU,

where fsl is the derivative of f, with respect to X, and g¢1,..., gs are the re-
mainders of the euclidean division (with respect to X) of f, by f1,..., fs_1, f.,
respectively (multiplied by appropriate even powers of Ay, ..., Rsm,, Te-

spectively, to clear the denominators).

Now, the sequence of degrees in X of f1,..., fs_1, f;, g1, - - -, 3s is smaller than
[the sequence of degrees in X of fi,..., fsie] (my,...,ms) w.r.t. the order
<.

-Case 2. At least one of h;,, (t) is zero

In this case we can truncate the corresponding polynomial f; and obtain
a sequence of polynomials, whose sequence of degrees in X is smaller than
(my,...,ms) w.r.t. the order <.

This completes the proof of main propostion and also proves the Tarski-
Seidenberg principle. ([l



APPENDIX I: ORDER ON THE SET OF TUPLES OF INTEGERS

Set N := U en N”

We define on N an equivalence relation ~:

for 0 := (ny,...,ns) and 7 := (my,...,my) in N, we write o ~ 7 if and only if
the following holds:

s =t and there exists a permutation g of {1,..., s} such that m; = ngy; for all
ie{l,... s}

For any o € N, the equivalence class of o will be denoted by o]
For any o0 € N and p € N, we set f,(0) := (number of occurrences of p in o).
For any 0,7 € N and p € N we define the property P(p,o,7) by:

Pp,0,7) = (fp(0) < fo(7)) AN(Yq > p, fo(0) = fo(7)).

Set M := N/ ~
Note that if ¢/, 7" are permutations of o and 7, then P(p, o, 7) is equivalent to
P(p,o’, ") for all p € N. This allows us to define a binary relation < on M:

[o] < [7] if and only if there exists p € N such that P(p, o, 7) is satisfied.

Remark 1
If p € N satisfies P(p,0,7), then for all q>p, f,(o) < f,(7)

Proposition 1
< defines a strict order on M.

Proof. We want to prove that < is antisymmetric and transitive:

antisymmetry: Let 0,7 € N such that [o] < [7]; we want to show [7] £ [o]
Choose p € N satisfying P(p, 0, 7) and let ¢ € N.

If ¢ > p, then by remark 1 we have f,(7) £ f,(co) so the first condition of
P(q,7,0) fails. Moreover, we have f,(c) < f,(7), so if ¢ < p the second
condition of P(q, 7, o) fails.

Thus, P(q, 7, 0) fails for every ¢ € N, which proves [7] £ [o].



transitivity: Let o, 7, p € N such that [p] < [o] and [o] < [7]
Choose p1, pa € N such that P(py, p, o) and P(ps, o, 7) hold.

Set p := maz(p1, p2).

If ¢ > p, then in particular ¢ > p; so f,(p) = f,(0); similarly, we have g > po
s0 fg(0) = fo(7) hence f,(p) = fo(7).

Since p > pi, pa, we have by remark 1: f,(p) < fp(0) < fo(7). If p = py,
the first inequality is strict, hence f,(p) < f,(7); if p = po then the second
inequatlity is strict, which leads to the same conclusion.

This proves that P(p, p, 7) is satisfied, hence [p] < [7].

Proposition 2
The order < is total on M

Proof. Let 0 = (ny,...,ns),7 = (mq,...,my) € N be non-equivalent.

Set A:={qe{ny,....,ns,ma,...,mu} | fo(o) # fo(7)}.

Note that A = @ if and only if 0 ~ 7, so by hypothesis we have A # @&. Thus,
we can define p := mazA.

By definition of p, we have f,(7) = f,(o) for all ¢ > p.

Moreover, since p € A, we have f,(0) # f,(7).

If f,(o) < fo(7), then P(p, o, 7) is satisfied, so [o] < [7]; if f(T) < f,(0), then
P(p,T,0) is satisfied, so [7] < [o].

O

Note that we have an algorithm which determines how to order the pair (o, 7)
and gives us an apropriate p:

pi=max{ng, ..., ng,my,..., My}
while p > 0:
if f,(0) > f,(7) return (o > 7,p)
if fo(0) < fp(7) return (o < 7,p)
p=p—1

Proposition 3
(M, <) is well-ordered:

Proof. For any 0 = (nq,...,ns) € N, set m, := max(ny,...,ns). Since m, is left

unchanged by permutation of o, so we can define my,) := m, unambiguously.
Note that for any a,b € M, m, < m,; implies a < b. Indeed, if m, < my, then

for any p > my, we have f,(b) =0 = f,(a); moreover, f,,, (a) =0 < fp,, (b), which



proves that P(my, a,b) holds.

Let A be a non-empty subset of M and set m := min{m, | a € A}
We are going to prove by induction on m that A has a smallest element.

m=0:

m—1—m:

If m = 0, then the set A := {[o] € A | o only contains zeros } is non-empty.
Let a be the element of Ay of minimal length; then I claim that a is the
smallest element of A.

Indeed: let b € A, b # a.

If b € Ay, then a and b both only contain zeros, so for all p > 0 f,(a) =0 =
f»(b); moreover, by choice of a, we have fy(a) = length(a) < length(b) =
fo(b). This proves that P(0, a,b) holds, hence a < b.

If b € A\ Ag, then my, > 0 =m, so b > a.

Assume m > 1.

Set B:={a € A|my,=m}, n:=min{f(a)| a € B} and C := {a € B |
fm(a) =n}.

I claim that for any ¢ € C' and any a € A\C, ¢ < a.

Indeed:

— if a € B\C, then by definition of C' we have f,,(¢) < fmn(a). Since
a,c € B, it follows from the definition of B that m is the maximal
element of both a and ¢, so that f,(a) =0 = f,(c) for all p > m. Thus,
P(m,c,a) holds.

— If a ¢ B, then by definition of B we have m, > m = m,, hence a > c.

Thus, it suffices to prove that C has a smallest element.

For any ¢ € C, we denote by ¢ the element of M obtained from ¢ by removing
every occurrence of m. Set C" := {¢ | ¢ € C}. Since m is the maximal
element of every ¢ € C, we have my < m — 1 for every ¢ € C’, hence
min{mey | ¢ € C'} < m — 1. By induction hypothesis, C’ then has a smallest
element ¢. ¢ is then the smallest element of C.

]

Note that there is a recursive algorithm which takes a subset of M as an
argument and returns its smallest element:

smallest element(A):

m :=min{m, | a € A}



B:={a€ A|m, =m}

n = min{ f.(b) | b € B}
C:={be B| fn(b) =n}

if C' is a singleton then return its only element

C"={d|ceC}
:=smallest__element(C")
return the concatenation of ¢ with (m,...,m)
—_———
n times

Proposition 4
The ordinal type of (M, <) is w®

Proof. For any n € N, set A, := {a € M | m, = n}.
We are going to build an isomorpism from w® to M by induction. More precisely,
we are going to build a sequence (¢,,)nen of maps such that:

o for any n € N, ¢, is an isomorphism from w"*! to A,,.

o for any n € N, ¢,11 extends ¢,.

Taking ¢ := U,ey @n, We obtain an isomorphism ¢ from U,cyw™™ = w® to
UnEN An - M
n =0 Note that we have (0) < (0,0) < (0,0,0) < (0,0,0,0) < ..., so an isomor-
phism from w to Ay is given by n — (0,0,...,0)
1ti
n+1 times

n — n+ 1 Assume we have an isomorphism ¢, : w"™ — A,. Remember that w2 is
the order type of (w X W™ <ep).

Define: ¢pi1(a, B) == dn(B) A (n+1,...,n+1)

a times

(here ‘A’ means concatenation). This is an isomorphism from (w x W™, <)
to An+1.

]





