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THE TARSKI-SEIDENBERG PRINCIPLE

Main Proposition. Let fi(T ,X) := hi,mi
(T )Xmi + . . . + hi,0(T ) for i =

1, . . . , s be a sequence of polynomials in n + 1 variables with coefficients in
Z, and let m := max{mi|i = 1, . . . , s}. Let W

′
be a subset of Ws,m. Then

there exists a boolean combination B(T ) = S1(T )∨ . . .∨Sp(T ) of polynomial
equations and inequalities in the variables T with coefficients in Z, such that,
for every real closed field R and every t ∈ Rn, we have

SIGNR

(
f1(t,X), . . . , fs(t,X)

)
∈ W ′ ⇔ B(t) holds true in R.

Proof. Without loss of generality, we assume that none of f1, . . . , fs is
identically zero and that hi,mi

(T ) is not identically zero for i = 1, . . . , s. To
every sequence of polynomials (f1, . . . , fs) associate the s-tuple (m1, . . . ,ms),
where deg(fi) = mi. We compare these finite sequences by defining a strict
order as follows:

σ := (m
′
1, . . . ,m

′
t) ≺ τ := (m1, . . . ,ms)

if there exists p ∈ N such that, for every q > p,
-the number of times q appears in σ = the number of times q appears in τ ,
and
-the number of times p appears in σ < the number of times p appears in τ .

This order ≺ is a total order 1 on the set of finite sequences.

Example: let m = max ({m1, . . . ,ms}) = ms (say), σ and τ be the sequence
of degrees of the sequences (f1, . . . , fs−1, f

′
s, g1, . . . , gs) and (f1, . . . , fs−1, fs)

respectively, i.e.
σ  (f1, . . . , fs−1, f

′
s, g1, . . . , gs),

τ  (f1, . . . , fs−1, fs)

1This was a mistake in the book Real Algebraic Geometry of J. Bochnak, M. Coste,
M.-F. Roy. For corrected argument, see Appendix I following this proof.
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then σ ≺ τ .

Let m = max{m1, . . . ,ms}.
In particular using p = m we have:(
deg(f1), . . . , deg(fs−1), deg(f

′
s), deg(g1), . . . , deg(gs)

)
≺

(
deg(f1), . . . , deg(fs)

)
.

Ifm = 0, then there is nothing to show, since SIGNR

(
f1(t,X), . . . , fs(t,X)

)
=

SIGNR

(
h1,0(t), . . . , hs,0(t)

) [
the list of signs of �constant terms�

]
.

Suppose that m ≥ 1 and ms = m = max{m1, . . . ,ms}. Let W
′′ ⊂ W2s,m be

the inverse image of W
′ ⊂ Ws,m under the mapping ϕ (as in main lemma).

Set W
′′

=
{
SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs) | SIGNR(f1, . . . , fs) ∈ W

′}
.

-Case 1. By the main lemma, for every real closed field R and for every
t ∈ Rn such that hi,mi

(t) 6= 0 for i = 1, . . . , s, we have

SIGNR

(
f1(t,X), . . . , fs(t,X)

)
∈ W ′

⇔

SIGNR

(
f1(t,X), . . . , fs−1(t,X), f

′
s(t,X), g1(t,X), . . . , gs(t,X)

)
∈ W ′′

,

where f
′
s is the derivative of fs with respect to X, and g1, . . . , gs are the re-

mainders of the euclidean division (with respect toX) of fs by f1, . . . , fs−1, f
′
s,

respectively (multiplied by appropriate even powers of h1,m1 , . . . , hs,ms , re-
spectively, to clear the denominators).
Now, the sequence of degrees in X of f1, . . . , fs−1, f

′
s, g1, . . . , gs is smaller than

[the sequence of degrees in X of f1, . . . , fs i.e.] (m1, . . . ,ms) w.r.t. the order
≺.

-Case 2. At least one of hi,mi
(t) is zero

In this case we can truncate the corresponding polynomial fi and obtain
a sequence of polynomials, whose sequence of degrees in X is smaller than
(m1, . . . ,ms) w.r.t. the order ≺.

This completes the proof of main propostion and also proves the Tarski-
Seidenberg principle. ��



APPENDIX I: ORDER ON THE SET OF TUPLES OF INTEGERS

Set N :=

t
nœN Nn

We define on N an equivalence relation ≥:

for ‡ := (n1, . . . , n

s

) and · := (m1, . . . , m

t

) in N , we write ‡ ≥ · if and only if

the following holds:

s = t and there exists a permutation g of {1, . . . , s} such that m

i

= n

g(i) for all

i œ {1, . . . , s}.

For any ‡ œ N , the equivalence class of ‡ will be denoted by [‡]

For any ‡ œ N and p œ N, we set f

p

(‡) := (number of occurrences of p in ‡).

For any ‡, · œ N and p œ N we define the property P(p, ‡, ·) by:

P(p, ‡, ·) © (f

p

(‡) < f

p

(·)) · (’q > p, f

q

(‡) = f

q

(·)).

Set M := N/ ≥
Note that if ‡

Õ
, ·

Õ
are permutations of ‡ and · , then P(p, ‡, ·) is equivalent to

P(p, ‡

Õ
, ·

Õ
) for all p œ N. This allows us to define a binary relation < on M :

[‡] < [· ] if and only if there exists p œ N such that P(p, ‡, ·) is satisfied.

Remark 1

If p œ N satisfies P(p, ‡, ·), then for all q Ø p, f

q

(‡) Æ f

q

(·)

Proposition 1

< defines a strict order on M .

Proof. We want to prove that < is antisymmetric and transitive:

antisymmetry: Let ‡, · œ N such that [‡] < [· ]; we want to show [· ] ⌅ [‡]

Choose p œ N satisfying P(p, ‡, ·) and let q œ N.

If q Ø p, then by remark 1 we have f

q

(·) ⌅ f

q

(‡) so the first condition of

P(q, ·, ‡) fails. Moreover, we have f

p

(‡) < f

p

(·), so if q < p the second

condition of P(q, ·, ‡) fails.

Thus, P(q, ·, ‡) fails for every q œ N, which proves [· ] ⌅ [‡].
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transitivity: Let ‡, ·, fl œ N such that [fl] < [‡] and [‡] < [· ]

Choose p1, p2 œ N such that P(p1, fl, ‡) and P(p2, ‡, ·) hold.

Set p := max(p1, p2).

If q > p, then in particular q > p1 so f

q

(fl) = f

q

(‡); similarly, we have q > p2
so f

q

(‡) = f

q

(·) hence f

q

(fl) = f

q

(·).

Since p Ø p1, p2, we have by remark 1: f

p

(fl) Æ f

p

(‡) Æ f

p

(·). If p = p1,
the first inequality is strict, hence f

p

(fl) < f

p

(·); if p = p2 then the second

inequatlity is strict, which leads to the same conclusion.

This proves that P(p, fl, ·) is satisfied, hence [fl] < [· ].

Proposition 2

The order < is total on M

Proof. Let ‡ = (n1, . . . , n

s

), · = (m1, . . . , m

t

) œ N be non-equivalent.

Set A := {q œ {n1, . . . , n

s

, m1, . . . , m

t

} | f

q

(‡) ”= f

q

(·)}.

Note that A = ? if and only if ‡ ≥ · , so by hypothesis we have A ”= ?. Thus,

we can define p := maxA.

By definition of p, we have f

q

(·) = f

q

(‡) for all q > p.

Moreover, since p œ A, we have f

p

(‡) ”= f

p

(·).

If f

p

(‡) < f

p

(·), then P(p, ‡, ·) is satisfied, so [‡] < [· ]; if f

p

(·) < f

p

(‡), then

P(p, ·, ‡) is satisfied, so [· ] < [‡].

Note that we have an algorithm which determines how to order the pair (‡, ·)

and gives us an apropriate p:

p := max{n1, . . . , n

s

, m1, . . . , m

t

}.

while p Ø 0:

if f

p

(‡) > f

p

(·) return (‡ > ·, p)

if f

p

(‡) < f

p

(·) return (‡ < ·, p)

p := p ≠ 1

Proposition 3

(M, <) is well-ordered:

Proof. For any ‡ = (n1, . . . , n

s

) œ N , set m

‡

:= max(n1, . . . , n

s

). Since m

‡

is left

unchanged by permutation of ‡, so we can define m[‡] := m

‡

unambiguously.

Note that for any a, b œ M , m

a

< m

b

implies a < b. Indeed, if m

a

< m

b

, then

for any p > m

b

, we have f

p

(b) = 0 = f

p

(a); moreover, f

mb
(a) = 0 < f

mb
(b), which
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proves that P(m

b

, a, b) holds.

Let A be a non-empty subset of M and set m := min{m

a

| a œ A}
We are going to prove by induction on m that A has a smallest element.

m=0: If m = 0, then the set A0 := {[‡] œ A | ‡ only contains zeros } is non-empty.

Let a be the element of A0 of minimal length; then I claim that a is the

smallest element of A.

Indeed: let b œ A, b ”= a.

If b œ A0, then a and b both only contain zeros, so for all p > 0 f

p

(a) = 0 =

f

p

(b); moreover, by choice of a, we have f0(a) = length(a) < length(b) =

f0(b). This proves that P(0, a, b) holds, hence a < b.

If b œ A\A0, then m

b

> 0 = m

a

so b > a.

m ≠ 1 æ m: Assume m Ø 1.

Set B := {a œ A | m

a

= m}, n := min{f

m

(a) | a œ B} and C := {a œ B |
f

m

(a) = n}.

I claim that for any c œ C and any a œ A\C, c < a.

Indeed:

– if a œ B\C, then by definition of C we have f

m

(c) < f

m

(a). Since

a, c œ B, it follows from the definition of B that m is the maximal

element of both a and c, so that f

p

(a) = 0 = f

p

(c) for all p > m. Thus,

P(m, c, a) holds.

– If a /œ B, then by definition of B we have m

a

> m = m

c

, hence a > c.

Thus, it su�ces to prove that C has a smallest element.

For any c œ C, we denote by c

Õ
the element of M obtained from c by removing

every occurrence of m. Set C

Õ
:= {c

Õ | c œ C}. Since m is the maximal

element of every c œ C, we have m

c

Õ Æ m ≠ 1 for every c

Õ œ C

Õ
, hence

min{m

c

Õ | c

Õ œ C

Õ} Æ m ≠ 1. By induction hypothesis, C

Õ
then has a smallest

element c

Õ
. c is then the smallest element of C.

Note that there is a recursive algorithm which takes a subset of M as an

argument and returns its smallest element:

smallest_element(A):

m := min{m

a

| a œ A}
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B := {a œ A | m

a

= m}
n = min{f

m

(b) | b œ B}
C := {b œ B | f

m

(b) = n}
if C is a singleton then return its only element

C

Õ
:= {c

Õ | c œ C}
c

Õ
:=smallest_element(C

Õ
)

return the concatenation of c

Õ
with (m, . . . , m)

¸ ˚˙ ˝
n times

Proposition 4

The ordinal type of (M, <) is Ê

Ê

Proof. For any n œ N, set A

n

:= {a œ M | m

a

= n}.

We are going to build an isomorpism from Ê

Ê

to M by induction. More precisely,

we are going to build a sequence („

n

)

nœN of maps such that:

• for any n œ N, „

n

is an isomorphism from Ê

n+1
to A

n

.

• for any n œ N, „

n+1 extends „

n

.

Taking „ :=

t
nœN „

n

, we obtain an isomorphism „ from

t
nœN Ê

n+1
= Ê

Ê

tot
nœN A

n

= M .

n = 0 Note that we have (0) < (0, 0) < (0, 0, 0) < (0, 0, 0, 0) < . . . , so an isomor-

phism from Ê to A0 is given by n ‘æ (0, 0, . . . , 0)

¸ ˚˙ ˝
n+1 times

n æ n + 1 Assume we have an isomorphism „

n

: Ê

n+1 æ A

n

. Remember that Ê

n+2
is

the order type of (Ê ◊ Ê

n+1
, <

lex

).

Define: „

n+1(–, —) := „

n

(—) · (n + 1, . . . , n + 1)

¸ ˚˙ ˝
– times

(here ‘·’ means concatenation). This is an isomorphism from (Ê ◊ Ê

n+1
, <

lex

)

to A

n+1.
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