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1. INTRODUCTION

Definiton 1.1. For K C R”,
Psd(K) := {f € RIX]| f(x) > 0V x € K}.
LetS ={gi,...,g,} € R[X], then

Ks:={x e R"| gi(x) >0V i=1,...,s}, the basic closed semi-algebraic set
defined by S and

Tg := { Z o, 8/'...80 o, € IR[X]% e = (el,...,es)}, the preordering
e1,....es€{0,1}
generated by S.

We also introduce

Mg := {0 +0181 +028> ...+ 0,8, | o; € ZR[X]?}, the quadratic module generated
by S.

Remark 1.2. (i) My is a quadratic module in R[X].

(1) Mg C Ts C Psd(Ks).
(We shall study these inclusions in more detail later. In general these inclusions
may be proper.)
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(iii) Psd(Ky) is a preordering.

Definiton 1.3. T's (resp. My) is called saturated if Psd(Ks) = T's (resp. Ms).

2. EXAMPLES

For the examples that we are about to see, we need the following 2 lemmas:

Lemma 2.1. Let f € R[X]; f # 0, then 3 x € R" s.t. f(x) # 0. [Here n is such
that X = (X4,...,X,).]

Proof. By induction on n.

If n = 1, result follows since a nonzero polynomial € R[X] has only finitely many
Zeroes.
Letn>2and 0 £ f € R[Xy,....X,] = R[Xy,..., X1 ][X.].
f£20= f=go+ g Xy + ...+ auX 80,8158 €R[Xy,..., X, 1]; g 0.
Since g; # 0, so by induction on 7 :

A (xp,x0, .. Xx01) St gr(xy, X0, 00, Xm1) # 0.

= The polynomial in one variable X,, i.e. f(x, x2,...,X,-1, X,) Z O.
Therefore by induction forn = 1, 4 x,, € R s.t.
S, xo, 000, X1, %) #0 o

Remark 2.2. If f € R[X], f # 0, then R"\Z(f) = {x € R"| f(x) # 0} is dense in
R", where Z(f) := {x € R" | f(x) = 0} is the zero set of f.

Equivalently, Z(f) has empty interior. In other words, a polynomial which van-
ishes on a nonempty open set is identically the zero polynomial.

Lemma 2.3. Leto := ff+...+ fZ ; fi,....fi € R[X] and f; # 0, then
o #0

(i) deg(cr) = 2 max{degf; ;i = 1,....k|
[In particular deg(o) is even. |

Proof. (1) Since f; # 0, so by lemma 2.1 3 x € R" s.t. fi(x) # 0.
= o(x) = fix)*+...+ fi(x)*>0
=0 £0.

() fi = hijy +...+ h;,, where d = max{degf,- li=1,... ,k} ; hi;, homogeneous
ofdegreejorh,-j =0fori=1,...,k.
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Clearly deg(o) < 2d.

To show deg(o) = 2d, consider the homogeneous polynomial
h%d+"'+h/%d = hyy

Note that if /,, # 0, then deg(h,,) = 2d and h,, 1s the homogeneous
component of o of highest degree (i.e. leading term), so deg(c) = 2d.

Now we know that i;, # 0 for some i € {1,...,k}, so by (i) we get hy; Z 0.
O

Now coming back to the inclusion: 75 C Psd(Ky)

Example 2.4.(1) i) S = ¢,n=1= Ks; = Rand T = 3 R[X]
= Tg = Psd(R).

(i) S ={(1 - X*?),n=1= Ky =[-1,1] (compact),
Ts = {00+ o1(1 = X3 | 0, 071 € LRIXP} = Ms.
Claim. TS - PSd(Ks)
For example: (1 — X?) € Psd[-1, 1] (clearly),
but (1 — X?) ¢ Ty, since if we assume for a contradiction that
(1-X*) =00 +01(1-X?)°, (1)

where oy = Y, f7. Then evaluating (1) at x = + 1 we get
oo(£1) =Y fA(£1) =0

= fi(x1)=0

= f; = (1 — X?g, , for some g; € R[X]
=00=(1-X)Yg

Substituting oy back in (1) we get

1=(1-X)Yg +1-X 0, (2)
Evaluating (2) at x = =1 yields 1 = 0, a contradiction.

(iii) § = {X3},n =1 = Ks = [0, o) (noncompact),
TS = {0’0 -|-0'1Xv3 | 09,01 € ZR[X]Z} = Ms.

Claim. T C Psd(Ky)
For example: X € Psd(Ks), but X ¢ T (we will use degree argument to
show this).
We compute the possible degrees of elements t € Ts; ¢t £ 0
Let
=0y +O'1X3; 00,01 € ZR[X]Z,
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then
e 0y # 0 = deg(oy) is even.
e 0 #0 = deg(o) is even.
e 0 = 0 = deg(?) is odd and > 3.
e 0 =0 = deg(?) is even.
ey 0, oy #0, then
[even =] deg(o) # deg(o1x*) [= odd]
So, deg(f) = max {deg(ao), deg(crlx3)} is even or odd > 3.

This proves that X ¢ T and hence Ty C Psd(K).
Example 2.4.2) S = ¢, n=2 = Kg =R*>and Ty = Mg = > R[X, Y]>.
We see that T C Psd(Ky)

For example: m(X,Y) := X?Y* + X*Y? — 3X?Y? + 1 € Psd(R?), but ¢ Ty
Y RIX, Y.

3. POSITIVSTELLENSATZ (Geometric Version)

Theorem 3.1. (Positivstellensatz: Geometric Version) Let A = R[X]. Let S
{g1,...,8s} SR[X], Ks, Ts as defined above, f € R[X]. Then

(D) f>0onKg ©dp,geTsst.pf=1+gq
2 f=200nKs ©AmeZ,Ap,geTsst. pf=f"+gq
B f=0onKs ©®AmeZ, st —feTs
A Ks=¢p —-1€eTs.
Important corollaries to the PSS are:
(1) The real Nullstellensatz
(ii) Hilbert’s 17" problem
(i11) Abstract Positivstellensatz
The proof of the PSS consists of two parts:

-Step I: prove that (1) = 2) = 3) = (4) = (1)
-Step II: prove (4) [using Tarski Transfer]
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We shall start the proof with step II:

Clearly Ks # ¢ = —1 ¢ Ts (since —1 € Ty = Kg = ¢), so it only remains to
prove the following proposition:

Proposition 3.2. If —1 ¢ T (i.e. if T is a proper preordering), then K # ¢.

For proving this we need to recall some definitions and results:
Definition 3.3.1. Let A be a commutative ring with 1, a preordering P C A is said
to be an ordering on A if PU —P = A and p := P N —P is a prime (hence proper)

ideal of A.

Definition 3.3.2. Let P be an ordering in A, then SupportP := p (the prime ideal
PnN-P).

Lemma 3.4.1. Let A be a commutative ring with 1. Let P be a maximal proper
preordering in A. Then P is an ordering.

Lemma 3.4.2. Let A be a commutative ring with 1 and P C A an ordering. Then
P induces uniquely an ordering on F := ff(A/p) defined by:

Va,beA,%2p0(inF)@abeP,whereE:a+p.



