POSITIVE POLYNOMIALS LECTURE NOTES (02: 15/04/10)

SALMA KUHLMANN

Contents

1. Introduction	1
2. Examples	2
3. Positivstellensatz	4

1. INTRODUCTION

Definition 1.1. For $K \subseteq \mathbb{R}^n$,

 $\mathbf{Psd}(K) := \{ f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) \ge 0 \ \forall \ \underline{x} \in K \}.$

Let $S = \{g_1, \dots, g_s\} \subseteq \mathbb{R}[X]$, then

 $\mathbf{K}_{\mathbf{S}} := \{\underline{x} \in \mathbb{R}^n \mid g_i(\underline{x}) \geq 0 \ \forall \ i = 1, \dots, s\},$ the basic closed semi-algebraic set defined by S and

$$\mathbf{T}_{\mathbf{S}} := \Big\{ \sum_{\substack{e_1, \dots, e_s \in \{0,1\} \\ \text{generated by } S}} \sigma_e \ g_1^{e_1} \dots g_s^{e_s} \mid \sigma_e \in \Sigma \mathbb{R}[\underline{X}]^2, e = (e_1, \dots, e_s) \Big\}, \text{ the preordering }$$

We also introduce

 $\mathbf{M_S} := \{ \sigma_0 + \sigma_1 g_1 + \sigma_2 g_2 \dots + \sigma_s g_s \mid \sigma_i \in \Sigma \mathbb{R}[\underline{X}]^2 \},$ the quadratic module generated by S.

Remark 1.2. (i) M_S is a quadratic module in $\mathbb{R}[X]$.

(ii) $M_S \subseteq T_S \subseteq \operatorname{Psd}(K_S)$.

(We shall study these inclusions in more detail later. In general these inclusions may be proper.)

(iii) $Psd(K_S)$ is a preordering.

Definition 1.3. T_S (resp. M_S) is called **saturated** if $Psd(K_S) = T_S$ (resp. M_S).

2. EXAMPLES

For the examples that we are about to see, we need the following 2 lemmas:

Lemma 2.1. Let $f \in \mathbb{R}[\underline{X}]$; $f \not\equiv 0$, then $\exists \underline{x} \in \mathbb{R}^n$ s.t. $f(\underline{x}) \neq 0$. [Here n is such that $X = (X_1, \dots, X_n)$.]

Proof. By induction on n.

If n = 1, result follows since a nonzero polynomial $\in \mathbb{R}[\underline{X}]$ has only finitely many zeroes.

Let $n \ge 2$ and $0 \ne f \in \mathbb{R}[X_1, ..., X_n] = \mathbb{R}[X_1, ..., X_{n-1}][X_n]$. $f \ne 0 \Rightarrow f = g_0 + g_1 X_n + ... + g_k X_n^k$; $g_0, g_1, ..., g_k \in \mathbb{R}[X_1, ..., X_{n-1}]$; $g_k \ne 0$. Since $g_k \ne 0$, so by induction on n:

$$\exists (x_1, x_2, \dots, x_{n-1}) \text{ s.t. } g_k(x_1, x_2, \dots, x_{n-1}) \neq 0.$$

 \Rightarrow The polynomial in one variable X_n i.e. $f(x_1, x_2, \dots, x_{n-1}, X_n) \not\equiv 0$.

Therefore by induction for $n = 1, \exists x_n \in \mathbb{R}$ s.t.

$$f(x_1, x_2, \dots, x_{n-1}, x_n) \neq 0$$

Remark 2.2. If $f \in \mathbb{R}[\underline{X}]$, $f \not\equiv 0$, then $\mathbb{R}^n \setminus Z(f) = \{x \in \mathbb{R}^n \mid f(x) \neq 0\}$ is dense in \mathbb{R}^n , where $Z(f) := \{x \in \mathbb{R}^n \mid f(x) = 0\}$ is the zero set of f.

Equivalently, Z(f) has empty interior. In other words, a polynomial which vanishes on a nonempty open set is identically the zero polynomial.

Lemma 2.3. Let $\sigma := f_1^2 + \ldots + f_k^2$; $f_1, \ldots, f_k \in \mathbb{R}[\underline{X}]$ and $f_1 \not\equiv 0$, then

- (i) $\sigma \not\equiv 0$
- (ii) $\deg(\sigma) = 2 \max \{\deg f_i : i = 1, ..., k\}$ [In particular $\deg(\sigma)$ is even.]

Proof. (i) Since $f_1 \not\equiv 0$, so by lemma 2.1 $\exists \underline{x} \in \mathbb{R}^n$ s.t. $f_1(\underline{x}) \not\equiv 0$. $\Rightarrow \sigma(\underline{x}) = f_1(\underline{x})^2 + \ldots + f_k(\underline{x})^2 > 0$ $\Rightarrow \sigma \not\equiv 0$.

(ii) $f_i = h_{i_0} + \ldots + h_{i_d}$, where $d = \max\{\deg f_i \mid i = 1, \ldots, k\}$; h_{i_j} homogeneous of degree j or $h_{i_j} \equiv 0$ for $i = 1, \ldots, k$.

Clearly $deg(\sigma) \le 2d$.

To show $deg(\sigma) = 2d$, consider the homogeneous polynomial $h_{1_d}^2 + \ldots + h_{k_d}^2 := h_{2d}$

Note that if $h_{2d} \not\equiv 0$, then $\deg(h_{2d}) = 2d$ and h_{2d} is the homogeneous component of σ of highest degree (i.e. leading term), so $\deg(\sigma) = 2d$. Now we know that $h_{i_d} \not\equiv 0$ for some $i \in \{1, \dots, k\}$, so by (i) we get $h_{2d} \not\equiv 0$.

Now coming back to the inclusion: $T_S \subseteq Psd(K_S)$

Example 2.4.(1) (i)
$$S = \phi$$
, $n = 1 \Rightarrow K_S = \mathbb{R}$ and $T_S = \sum \mathbb{R}[X]^2 \Rightarrow T_S = \operatorname{Psd}(\mathbb{R})$.

(ii)
$$S = \{(1 - X^2)^3\}, n = 1 \Rightarrow K_S = [-1, 1] \text{ (compact)},$$

$$T_S = \{\sigma_0 + \sigma_1(1 - X^2)^3 \mid \sigma_0, \sigma_1 \in \sum \mathbb{R}[X]^2\} = M_S.$$

Claim. $T_S \subseteq \operatorname{Psd}(K_S)$

For example: $(1 - X^2) \in Psd[-1, 1]$ (clearly),

but $(1 - X^2) \notin T_S$, since if we assume for a contradiction that

$$(1 - X^2) = \sigma_0 + \sigma_1 (1 - X^2)^3, \tag{1}$$

where $\sigma_0 = \sum_i f_i^2$. Then evaluating (1) at $x = \pm 1$ we get

$$\sigma_0(\pm 1) = \sum_{i=1}^{\infty} f_i^2(\pm 1) = 0$$

$$\Rightarrow f_i(\pm 1) = 0$$

$$\Rightarrow f_i = (1 - X^2)g_i$$
, for some $g_i \in \mathbb{R}[X]$

$$\Rightarrow \sigma_0 = (1 - X^2)^2 \sum g_i^2$$

Substituting σ_0 back in (1) we get

$$1 = (1 - X^2) \sum_{i} g_i^2 + (1 - X^2)^2 \sigma_1$$
 (2)

Evaluating (2) at $x = \pm 1$ yields 1 = 0, a contradiction.

(iii)
$$S = \{X^3\}, n = 1 \Rightarrow K_S = [0, \infty)$$
 (noncompact),
 $T_S = \{\sigma_0 + \sigma_1 X^3 \mid \sigma_0, \sigma_1 \in \sum \mathbb{R}[X]^2\} = M_S.$

Claim. $T_S \subseteq \operatorname{Psd}(K_S)$

For example: $X \in \operatorname{Psd}(K_S)$, but $X \notin T_S$ (we will use degree argument to show this).

We compute the possible degrees of elements $t \in T_S$; $t \neq 0$ Let

$$t = \sigma_0 + \sigma_1 X^3; \, \sigma_0, \sigma_1 \in \sum \mathbb{R}[X]^2,$$

then

- $\sigma_0 \not\equiv 0 \Rightarrow \deg(\sigma_0)$ is even.
- $\sigma_1 \not\equiv 0 \Rightarrow \deg(\sigma_1)$ is even.
- $\sigma_0 \equiv 0 \Rightarrow \deg(t)$ is odd and ≥ 3 .
- $\sigma_1 \equiv 0 \Rightarrow \deg(t)$ is even.
- $\sigma_0 \neq 0$, $\sigma_1 \neq 0$, then [even =] $\deg(\sigma_0) \neq \deg(\sigma_1 x^3)$ [= odd]

So, $\deg(t) = \max \left\{ \deg(\sigma_0), \deg(\sigma_1 x^3) \right\}$ is even or odd ≥ 3 .

This proves that $X \notin T_S$ and hence $T_S \subseteq \operatorname{Psd}(K_S)$.

Example 2.4.(2) $S = \phi$, $n = 2 \Rightarrow K_S = \mathbb{R}^2$ and $T_S = M_S = \sum \mathbb{R}[X, Y]^2$.

We see that $T_S \subseteq \operatorname{Psd}(K_S)$

For example: $m(X, Y) := X^2Y^4 + X^4Y^2 - 3X^2Y^2 + 1 \in Psd(\mathbb{R}^2)$, but $\notin T_S = \sum \mathbb{R}[X, Y]^2$.

3. POSITIVSTELLENSATZ (Geometric Version)

Theorem 3.1. (Positivstellensatz: Geometric Version) Let $A = \mathbb{R}[\underline{X}]$. Let $S = \{g_1, \dots, g_s\} \subseteq \mathbb{R}[\underline{X}]$, K_S, T_S as defined above, $f \in \mathbb{R}[\underline{X}]$. Then

(1)
$$f > 0$$
 on $K_S \Leftrightarrow \exists p, q \in T_S$ s.t. $pf = 1 + q$

(2)
$$f \ge 0$$
 on $K_S \Leftrightarrow \exists m \in \mathbb{Z}_+, \exists p, q \in T_S$ s.t. $pf = f^{2m} + q$

(3)
$$f = 0$$
 on $K_S \Leftrightarrow \exists m \in \mathbb{Z}_+ \text{ s.t. } -f^{2m} \in T_S$

(4)
$$K_S = \phi \Leftrightarrow -1 \in T_S$$
.

Important **corollaries** to the PSS are:

- (i) The real Nullstellensatz
- (ii) Hilbert's 17th problem
- (iii) Abstract Positivstellensatz

The proof of the PSS consists of two parts:

-Step I: prove that
$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$$

-Step II: prove (4) [using Tarski Transfer]

We shall start the proof with step II:

Clearly $K_S \neq \phi \Rightarrow -1 \notin T_S$ (since $-1 \in T_S \Rightarrow K_S = \phi$), so it only remains to prove the following proposition:

Proposition 3.2. If $-1 \notin T_S$ (i.e. if T_S is a proper preordering), then $K_S \neq \phi$.

For proving this we need to recall some definitions and results:

Definition 3.3.1. Let *A* be a commutative ring with 1, a preordering $P \subseteq A$ is said to be an **ordering** on *A* if $P \cup -P = A$ and $\mathfrak{p} := P \cap -P$ is a prime (hence proper) ideal of *A*.

Definition 3.3.2. Let *P* be an ordering in *A*, then Support $P := \mathfrak{p}$ (the prime ideal $P \cap -P$).

Lemma 3.4.1. Let A be a commutative ring with 1. Let P be a maximal proper preordering in A. Then P is an ordering.

Lemma 3.4.2. Let A be a commutative ring with 1 and $P \subseteq A$ an ordering. Then P induces uniquely an ordering on $F := ff(A/\mathfrak{p})$ defined by:

$$\forall a, b \in A, \frac{\overline{a}}{\overline{b}} \ge_P 0 \text{ (in } F) \Leftrightarrow ab \in P, \text{ where } \overline{a} = a + \mathfrak{p}.$$