POSITIVE POLYNOMIALS LECTURE NOTES (04: 22/04/10 - BEARBEITET 07/01/19)

SALMA KUHLMANN

Contents

1. Exkurs in commutative algebra (continued) 1
2. Radical ideals and Real ideals 2
3. The Real Spectrum 5

1. EXKURS IN COMMUTATIVE ALGEBRA

Recall 1.1. Let K be a field and I an ideal of $K[\underline{X}]$, then the inclusion $I \subseteq \mathcal{I}(\mathcal{Z}(I))$ is always true.

But in general it is false that

$$
\begin{equation*}
\mathcal{I}(\mathcal{Z}(I))=I \tag{1}
\end{equation*}
$$

Note 1.2. In other words we study the map

$$
\begin{aligned}
\mathcal{I}:\left\{\text { algebraic sets in } K^{n}\right\} & \rightsquigarrow\{\text { Ideals of } K[\underline{X}]\} \\
V & \longmapsto \mathcal{I}(V)
\end{aligned}
$$

- Clearly this map is 1-1 (proposition 2.5 of last lecture).
- What is the image of \mathcal{I} ?

Let I an ideal, $I=\mathcal{I}(V)$
$\Rightarrow \mathcal{Z}(I)=\underbrace{\mathcal{Z}(\mathcal{I}(V))=V}_{\text {(prop. 2.5 of last lecture) }}$
Thus an ideal I is in the image $\Leftrightarrow I=\mathcal{I}(\mathcal{Z}(I))$
So studying the equality (1) amounts to studying (2).

2. RADICAL IDEALS AND REAL IDEALS

Remark 2.1. For an ideal $I \subseteq K[\underline{X}]$, answer to $I=\mathcal{I}(\mathcal{Z}(I))$ is known

- when K is algebraically closed (Hilbert's Nullstellensatz),
or
- when K is real closed (Real Nullstellensatz).

To formulate these two important theorems we need to introduce some terminology:

Definition 2.2. Let A be a commutative ring with $1, I \subseteq A, I$ an ideal of A. Define
(i) $\sqrt{I}:=\left\{a \in A \mid \exists m \in \mathbb{N}\right.$ s.t. $\left.a^{m} \in I\right\}$, the radical of I.
(ii) $\sqrt[R]{I}:=\left\{a \in A \mid \exists m \in \mathbb{N}\right.$ and $\sigma \in \Sigma A^{2}$ s.t. $\left.a^{2 m}+\sigma \in I\right\}$, the real radical of I.

Remark 2.3. It follows from the definition that $I \subseteq \sqrt{I} \subseteq \sqrt[R]{I}$.
Definition 2.4. Let I be an ideal of A. Then
(1) I is called radical ideal if $I=\sqrt{I}$, and
(2) I is called real radical ideal (or just real ideal) if $I=\sqrt[R]{I}$.

Remark 2.5. (i) Every prime ideal is radical, but the converse does not hold in general.
(ii) I real radical $\Rightarrow I$ radical (follows from Remark 2.3 and Definition 2.4).

Proposition 2.6. Let A be a commutative ring with $1, I \subseteq A$ an ideal. Then
(1) I is radical $\Leftrightarrow \forall a \in A: a^{2} \in I \Rightarrow a \in I$
(2) I is real radical \Leftrightarrow for $k \in \mathbb{N}, \forall a_{1}, \ldots, a_{k} \in A: \sum_{i=1}^{k} a_{i}^{2} \in I \Rightarrow a_{1} \in I$.

Proof. (1) (\Rightarrow) Trivially follows from definition.

$$
(\Leftrightarrow) \text { Let } a \in \sqrt{I} \text {, then } \exists m \geq 1 \text { s.t. } a^{m} \in I \text {. }
$$

Let k (big enough) s.t. $2^{k} \geq m$, then

$$
a^{2^{k}}=a^{m} a^{2^{k}-m} \in I
$$

Now we show by induction on k that:

$$
\left[a^{2} \in I \Rightarrow a \in I\right] \Rightarrow\left[a^{2^{k}} \in I \Rightarrow a \in I\right]
$$

For $k=1$, it is clear.
Assume it true for k and show it true for $k+1$, i.e. let $a^{2^{k+1}} \in I$, then

$$
a^{2^{k+1}}=\left(a^{2^{k}}\right)^{2} \in I \underbrace{\Rightarrow}_{\text {(by assumption) }} a^{2^{k}} \in I \underbrace{\Rightarrow}_{\text {(induction hypothesis) }} a \in I
$$

$(2)(\Rightarrow)$ Trivially follows from definition.

$$
\begin{aligned}
(& \Leftarrow) \text { Let } a \in \sqrt[R]{I}, \text { then } \exists m \geq 1, \sigma=\Sigma a_{i}{ }^{2}\left(\in \Sigma A^{2}\right) \text { s.t. } a^{2 m}+\sigma \in I . \\
& \Rightarrow\left(a^{m}\right)^{2}+\sigma \in I \underbrace{\Rightarrow}_{\text {(by assumption) }} a^{m} \in I \underbrace{\Rightarrow}_{\text {(as above in (1)) }} a \in I .
\end{aligned}
$$

Remark 2.7. (i) Since real radical ideal \Rightarrow radical ideal, so in particular (2) $\Rightarrow(1)$ in above proposition.
(ii) A prime ideal is always radical (as in Remark 2.5), but need not be real.

Proposition 2.8. Let $\mathfrak{p} \subseteq A$ be a prime ideal. Then \mathfrak{p} is real $\Leftrightarrow f f(A / \mathfrak{p})$ is a real field.

Proof. \mathfrak{p} is not real
$\Leftrightarrow \exists a, a_{1}, \ldots, a_{k} \in A ; a \notin \mathfrak{p}$ such that $a^{2}+\sum_{i=1}^{k} a_{i}^{2} \in \mathfrak{p}$
$\Leftrightarrow \bar{a}^{2}+\sum_{i=1}^{k}{\overline{a_{i}}}^{2}=0$ and $\bar{a} \neq 0($ in $A / \mathfrak{p})$
$\Leftrightarrow f f(A / \mathfrak{p})$ is not real.
Theorem 2.9. Let K be a field, $A=K[\underline{X}], I \subseteq A$ an ideal. Then
(1) (Hilbert's Nullstellensatz) Assume K is algebraically closed, then

$$
\mathcal{I}(\mathcal{Z}(I))=\sqrt{I}
$$

(Proved in B5)
(2) (Real Nullstellensatz) Assume K is real closed, then $\mathcal{I}(\mathcal{Z}(I))=\sqrt[R]{I}$.
(Will be deduced from Positivstellensatz)
Corollary 2.10. Consider the map:

$$
\mathcal{I}:\left\{\text { algebraic sets in } K^{n}\right\} \longrightarrow\{\text { Ideals of } K[\underline{X}]\}
$$

(1) If K is algebraically closed, then Image $\mathcal{I}=\{I \mid I$ is a radical ideal $\}$
(2) If K is real closed, then

Image $\mathcal{I}=\{I \mid I$ is real ideal $\}$
Now we want to deduce the Real Nullstellensatz [Theorem 2.9 (2)] from part (3) of the Positivstellensatz (PSS) [Theorem 1.1 of last lecture].
We need the following 2 (helping) lemmas:
Lemma 2.11. Let A be a commutative ring and M be a quadratic module, then:
(1) $M \cap(-M)$ is an ideal of A.
(2) The following are equivalent for $a \in A$:
(i) $a \in \sqrt{M \cap(-M)}$
(ii) $a^{2 m} \in M \cap(-M)$ for some $m \in \mathbb{N}, m \geq 1$
(iii) $-a^{2 m} \in M$ for some $m \in \mathbb{N}, m \geq 1$.

Lemma 2.12. Let A be a ring, $M\left(=M_{S}\right)$ a quadratic module (resp. preordering) of A generated by $S=\left\{g_{1}, \ldots, g_{s}\right\} ; g_{1}, \ldots, g_{s} \in A$. Let I be an ideal in A generated by h_{1}, \ldots, h_{t}, i.e. $I=<h_{1}, \ldots, h_{t}>; h_{1}, \ldots, h_{t} \in A$. Then $M+I$ is the quadratic module (resp. the preordering) generated by $S \cup\left\{ \pm h_{i} ; i=1, \ldots, t\right\}$.

Recall 2.13. [(3) of PSS] Let $A=\mathbb{R}[\underline{X}], S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}], f \in$ $\mathbb{R}[\underline{X}]$. Then $f=0$ on $K_{S} \Leftrightarrow \exists m \in \mathbb{Z}_{+}$s.t. $-f^{2 m} \in T_{S}$.

Corollary 2.14. (to Recall 2.13 and Lemma 2.11) Let $K=K_{S} \subseteq \mathbb{R}^{n}, T=$ $T_{S} \subseteq \mathbb{R}[\underline{X}]$ (as in PSS), then

$$
\mathcal{I}\left(K_{S}\right)=\sqrt{T_{S} \cap\left(-T_{S}\right)} .
$$

Proof. $f=0$ on $K_{S} \underbrace{\Leftrightarrow}_{(\mathrm{by}(3) \text { of PSS })}-f^{2 m} \in T_{S}$ for some $m \in \mathbb{Z}_{+}$

$$
\underbrace{\Leftrightarrow}_{\text {(by lemma 2.11) }} f \in \sqrt{T_{S} \cap\left(-T_{S}\right)}
$$

Corollary 2.15. (to Lemma 2.11) Let A be a commutative ring with 1 . Let I be an ideal of A. Consider the preordering $T:=\Sigma A^{2}+I$, then

$$
\sqrt[R]{I}=\sqrt{T \cap(-T)}
$$

Now Corollary 2.14 and Corollary 2.15 give the proof of the Real Nullstellensatz (RNSS) as follows:

Proof of RNSS [Theorem 2.9 (2)]. Let I be an ideal of $\mathbb{R}[\underline{X}]$
We show that: $\mathcal{I}(\mathcal{Z}(I))=\sqrt[R]{I}$
$\mathbb{R}[\underline{X}]$ Noetherian $\Rightarrow I=<h_{1}, \ldots, h_{t}>$ (by Hilbert Basis Theorem).
Consider $S:=\left\{ \pm h_{i} ; i=1, \ldots, t\right\}$
Then $K_{S}=\mathcal{Z}(I)$ [clearly]
Now by Lemma 2.12, we have:

$$
T=T_{S}=\Sigma \mathbb{R}[\underline{X}]^{2}+I
$$

So we get,
$\mathcal{I}(\mathcal{Z}(I))=\mathcal{I}\left(K_{S}\right) \underbrace{=}_{\text {(Cor 2.14) }} \sqrt{T \cap(-T)} \underbrace{=}_{\text {(Cor 2.15) }} \sqrt[R]{I}$

3. THE REAL SPECTRUM

Definition 3.1. Let A be a commutative ring with 1 . Then:
$\operatorname{Sexec}(A):=\{\mathfrak{p} \mid \mathfrak{p}$ is prime ideal of $A\}$ is called the Spectrum of A.
$\mathcal{S} \boldsymbol{\operatorname { p e r }}(A)=\boldsymbol{\mathcal { S p e c }}_{r}(A):=\{(\mathfrak{p}, \leq) \mid \mathfrak{p}$ is a prime ideal of A and \leq is an ordering on the (formally real) field $f f(A / \mathfrak{p})\}$ is called the Real Spectrum of A.

Remark 3.2. (i) Several orderings may be defined on $f f(A / \mathfrak{p})$,

$$
\left(\mathfrak{p}, \leq_{1}\right) \neq\left(\mathfrak{p}, \leq_{2}\right)
$$

(ii) $(\mathfrak{p}, \leq) \in \mathcal{S} \operatorname{per}(A) \Rightarrow \mathfrak{p}$ is real radical ideal. [see Proposition 2.8 and Remark 2.5 (i).]

Note 3.3. $\mathcal{S p e r}(A):=\{\alpha=(\mathfrak{p}, \leq) \mid \mathfrak{p}$ is a real prime and \leq an ordering on $f f(A / \mathfrak{p})\}$.

