POSITIVE POLYNOMIALS LECTURE NOTES (05: 27/04/10 - BEARBEITET 07/01/2019)

SALMA KUHLMANN

Contents

1.	The Real Spectrum	1
2.	Topologies on $Sper(A)$	2
3.	Abstract Positivstellensatz	3

1. THE REAL SPECTRUM

Definition 1.1. Let A be a commutative ring with 1. We set:

 $Sper(A) := \{ \alpha = (\mathfrak{p}, \leq) \mid \mathfrak{p} \text{ is a prime ideal of } A \text{ and } \leq \text{ is an ordering on } ff(A/\mathfrak{p}) \}.$

Note 1.2. $Sper(A) := \{ \alpha = (\mathfrak{p}, \leq) \mid \mathfrak{p} \text{ is a real prime and } \leq \text{ an ordering on } ff(A/\mathfrak{p}) \}.$

Definition 1.3. Let $\alpha = (\mathfrak{p}, \leq) \in \mathcal{S}per(A)$, then $\mathfrak{p} = \operatorname{Supp}(\alpha)$, the **Support** of α .

Recall 1.4. An **ordering** $P \subseteq A$ is a preordering with $P \cup -P = A$ and $\mathfrak{p} := P \cap -P$ prime ideal of A.

Definition 1.5. Alternatively, the **Real Spectrum** of A, Sper(A) can be defined as:

$$Sper(A) := \{ P \mid P \subseteq A, P \text{ is an ordering of } A \}.$$

Remark 1.6. The two definitions of Sper(A) are equivalent in the following sense:

The map

$$\varphi$$
: {Orderings in A } \leadsto { $(\mathfrak{p}, \leq), \mathfrak{p}$ real prime, \leq ordering on $ff(A/\mathfrak{p})$ }

$$P \longmapsto \mathfrak{p} := P \cap -P, \leq_P \text{ on } ff \left(A/\mathfrak{p} \right)$$
 where $\frac{\overline{a}}{\overline{b}} \geq_P 0 \Leftrightarrow ab \in P \text{ with } \overline{a} = a + \mathfrak{p}$

is bijective where $\varphi^{-1}(\mathfrak{p}, \leq)$ is $P := \{a \in A \mid \overline{a} \geq 0\}$.

2. TOPOLOGIES ON Sper(A)

Definition 2.1. The **Spectral Topology** on Sper(A):

Sper(A) as a topological space, subbasis of open sets is:

$$\mathcal{U}(a) := \{ P \in \mathcal{S}per(A) \mid a \notin P \}, a \in A.$$

(So a basis of open sets consists of finite intersection, i.e. of sets

$$\mathcal{U}(a_1,\ldots,a_n) := \{ P \in \mathcal{S}per(A) \mid a_1,\ldots,a_n \notin P \}$$

Then close by arbitrary unions to get all open sets. This is called Spectral Topology.

Definition 2.2. The Constructible (or Patch) Topology on Sper(A) is the topology that is generated by the open sets U(a) and their complements $Sper(A)\setminus U(a)$, for $a\in A$.

Subbasis for constructible topology is $\mathcal{U}(a)$, $\mathcal{S}per(A)\setminus\mathcal{U}(a)$, for $a\in A$.

Remark 2.3. The constructible topology is finer than the Spectral Topology (i.e. more open sets).

Special case: $A = \mathbb{R}[\underline{X}]$

Proposition 2.4. There is a natural embedding

$$\mathcal{P}: \mathbb{R}^n \longrightarrow \mathcal{S}per(\mathbb{R}[\underline{X}])$$

given by

$$\underline{x} \longmapsto P_{\underline{x}} := \Big\{ f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) \geq 0 \Big\}.$$

Proof. The map \mathcal{P} is well defined.

Verify that $P_{\underline{x}}$ is indeed an ordering of A.

Clearly it is a preordering, $P_{\underline{x}} \cup -P_{\underline{x}} = \mathbb{R}[\underline{X}]$.

 $\mathfrak{p} := P_{\underline{x}} \cap -P_{\underline{x}} = \left\{ f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) = 0 \right\} \text{ is actually a maximal ideal of } \mathbb{R}[\underline{X}],$

since $\mathfrak{p} = \text{Ker } (ev_x)$, the kernel of the evaluation map

$$ev_{\underline{x}}: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$$

$$f \longmapsto f(\underline{x})$$

so, $\frac{\mathbb{R}[X]}{\mathfrak{p}} \simeq \underbrace{\mathbb{R}}_{\text{b}}$ (by first isomorphism theorem)

 $\Rightarrow \mathfrak{p}$ maximal $\Rightarrow \mathfrak{p}$ is prime ideal.

Theorem 2.5. $\mathcal{P}(\mathbb{R}^n)$, the image of \mathbb{R}^n in $\mathcal{S}per(\mathbb{R}[\underline{X}])$ is dense in $(\mathcal{S}per(\mathbb{R}[\underline{X}]),$ Constructible Topology) and hence in $(Sper(\mathbb{R}[X]), Spectral Topology)$. (i.e. $\overline{\mathcal{P}(\mathbb{R}^n)}^{patch} = \mathcal{S}per(\mathbb{R}[\underline{X}])$).

Proof. By definition, a basic open set in $Sper(\mathbb{R}[X])$ has the form

 $\mathcal{U} = \{P \in \mathcal{S}per(\mathbb{R}[\underline{X}]) \mid f_i \notin P, g_j \in P; i = i, \dots, s, j = 1, \dots, t\}, \text{ for some } i \in \mathcal{X}\}$ $f_i, g_j \in \mathbb{R}[\underline{X}].$

Let $P \in \mathcal{U}$ (open neighbourhood of $P \in \mathcal{S}per(\mathbb{R}[\underline{X}])$)

We want to show that: $\exists \ \underline{y} \in \mathbb{R}^n \text{ s.t. } P_{\underline{y}} \in \mathcal{U}$

Consider $F = ff(\mathbb{R}[X]/\mathfrak{p}); \mathfrak{p} = \operatorname{Supp}(P) = P \cap -P$ and \leq ordering on Finduced by P.

Then (F, \leq) is an ordered field extension of (\mathbb{R}, \leq) .

Consider $\underline{x} = (\overline{x_1}, \dots, \overline{x_n}) \in F^n$, where $\overline{x_i} = X_i + \mathfrak{p}$

Then by definition of \leq we have (as in the proof of PSS):

 $f_i(\underline{x}) < 0$ and $g_i(\underline{x}) \ge 0$; $\forall i = i, ..., s, j = 1, ..., t$.

By Tarski Transfer, $\exists y \in \mathbb{R}^n$ s.t.

$$f_i(\underline{y}) < 0 \ (\Leftrightarrow f_i \notin P_{\underline{y}}) \text{ and } g_j(\underline{y}) \ge 0 \ (\Leftrightarrow g_j \in P_{\underline{y}}) \ ; \ i = i, \dots, s, \ j = 1, \dots, t$$

$$\Leftrightarrow P_{\underline{y}} \in \mathcal{U}$$

3. ABSTRACT POSITIVSTELLENSATZ

Recall 3.1. T proper preordering $\Rightarrow \exists P$ an ordering of A s.t. $P \supseteq T$.

Definition 3.2. Let P be an ordering of A, fix $a \in A$. We define **Sign of** a at P:

$$a(P) := \begin{cases} 1 & \text{if } a \notin -P \\ 0 & \text{if } a \in P \cap -P \\ -1 & \text{if } a \notin P \end{cases}$$

(Note that this allows to consider $a \in A$ as a map on Sper(A)).

Notation 3.3. We write:
$$a > 0$$
 at P if $a(P) = 1$ $a = 0$ at P if $a(P) = 0$ $a < 0$ at P if $a(P) = -1$

Note that (in this notation) $a \ge 0$ at P iff $a \in P$.

Definition 3.4. Let $T \subseteq A$, then the **Relative Spectrum** of A with respect to T is

$$Sper_T(A) = \{P \mid P \supseteq T; P \subseteq A \text{ is an ordering of } A\}.$$

Proposition 3.5. Let $T \subseteq A$ be a finitely generated preordering, say $T = T_S$; where $S = \{g_1, \ldots, g_s\} \subseteq A$. Then

$$Sper_T(A) = Sper_S(A) = \{ P \in Sper(A) \mid g_i \in P ; i = i, ..., s \}$$
$$= \{ P \in Sper(A) \mid g_i(P) \ge 0 ; i = i, ..., s \}$$

Remark 3.5. Let $T \subseteq A$

- (i) $Sper_T(A)$ inherits the relative spectral (respectively constructible) topology.
- (ii) In case $T = T_{\{g_1,\dots,g_s\}}$ is a finitely generated preordering, then the proof of Theorem 2.5 goes through to give the following relative version for $Sper_T$:

Theorem 3.6. (Relative version of Theorem 2.5) Let $T = T_S =$ finitely generated preordering; $S = \{g_1, \ldots, g_s\}$. Let $K = K_S = \{\underline{x} \in \mathbb{R}^n \mid g_i(\underline{x}) \geq 0\} \subseteq \mathbb{R}^n$, a basic closed semi-algebraic set. Consider ($\mathcal{S}per_T$, Constructible Topology). Then

$$\mathcal{P}: K \leadsto \mathcal{S}per_T(\mathbb{R}[\underline{X}])$$
 (defined as before)
$$\underline{x} \longmapsto P_{\underline{x}} = \left\{ f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) \geq 0 \right\}$$

is well defined (i.e. $P_x \supseteq T \ \forall \ \underline{x} \in K$).

Moreover $\mathcal{P}(K)$ is dense in $\left(\mathcal{S}per_T(\mathbb{R}[\underline{X}]), \text{ Constructible Topology}\right)$.

Proof. The proof is analogous to the proof of Theorem 2.5. (Note the fact that T is finitely generated is crucial here to be able to

(Note the fact that T is finitely generated is crucial here to be able to apply Tarski Transfer.)

Theorem 3.7. (Abstract Positivstellensatz) Let A be a commutative ring, $T \subseteq A$ be a preordering of A (not necessarily finitely generated). Then for $a \in A$:

- (1) a > 0 on $Sper_T(A) \Leftrightarrow \exists p, q \in T \text{ s.t. } pa = 1 + q$
- (2) $a \ge 0$ on $Sper_T(A) \Leftrightarrow \exists p, q \in T, m \ge 0$ s.t. $pa = a^{2m} + q$
- (3) a = 0 on $Sper_T(A) \Leftrightarrow \exists m \ge 0 \text{ s.t. } -a^{2m} \in T.$

Proof. (1) Let a > 0 on $Sper_T(A)$. Suppose for a contradiction that there are no elements $p, q \in T$ s.t. pa = 1 + q i.e. s.t. -1 = q - pa

i.e.
$$-1 \neq q - pa \ \forall \ p, q \in T$$

Thus $-1 \notin T' := T - Ta$.

 $\Rightarrow T'$ is a proper preordering.

So (by recall 3.1) \exists P an ordering of A with $T' \subseteq P$.

Now observe that $T \subseteq P$ i.e. $P \in \mathcal{S}per_T(A)$ but $-a \in P$ (i.e. $a(P) \leq 0$) i.e. $a \leq 0$ on P, a contradiction to the assumption.

Proposition 3.8. Abstract Positivstellensatz \Rightarrow Positivstellensatz.

Proof.
$$A = \mathbb{R}[X], T = T_S = T_{\{g_1, ..., g_s\}}, K = K_S.$$

It suffices **to show** (2) of PSS [Theorem 1.1 of lecture 03 on 20/04/10], i.e. $f \ge 0$ on $K_S \Leftrightarrow \exists m \in \mathbb{Z}_+, \exists p, q \in T_S \text{ s.t. } pf = f^{2m} + q$.

Let $f \in \mathbb{R}[\underline{X}]$ and $f \geq 0$ on K_S .

It suffices [by (2) of Theorem 3.7] to show that $f \geq 0$ on $Sper_T(\mathbb{R}[\underline{X}])$:

If not then $\exists P \in \mathcal{S}per_T(\mathbb{R}[\underline{X}])$ s.t. $f \notin P$ So, $P \in \mathcal{U}_T(f)$ (open neighbourhood of $P \in \mathcal{S}per_T(\mathbb{R}[\underline{X}])$) Now by [Theorem 3.6 i.e.] relative density of $\mathcal{P}(K)$ in $\mathcal{S}per_T(\mathbb{R}[\underline{X}])$: $\exists \underline{x} \in K$ s.t. $P_{\underline{x}} \in \mathcal{U}_T(f)$ $\Rightarrow f \notin P_{\underline{x}} \Rightarrow f(\underline{x}) < 0$, a contradiction to the assumption.