POSITIVE POLYNOMIALS LECTURE NOTES (06: 29/04/10 - BEARBEITET 10/01/19)

SALMA KUHLMANN

Contents

1. Generalities about polynomials 1
2. PSD- and SOS- polynomials

2
3. Convex sets, cones and extremality 3

1. GENERALITIES ABOUT POLYNOMIALS

Definition 1.1. For a polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, we write

$$
p(\underline{X})=\sum_{\underline{i} \in \mathbb{Z}_{+}^{n}} c_{i} \underline{X^{\underline{i}}} ; c_{i} \in \mathbb{R},
$$

where $\underline{X}^{\underline{i}}=X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}$ is a monomial of degree $=|\underline{i}|=\sum_{k=1}^{n} i_{k}$ and $c_{i} \underline{X}^{\underline{i}}$ is a term.

Definition 1.2. A polynomial $p(\underline{X}) \in \mathbb{R}[\underline{X}]$ is called homogeneous or form if all terms in p have the same degree.

Notation 1.3. $\mathcal{F}_{n, m}:=\left\{F \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right] \mid F\right.$ is a form and $\left.\operatorname{deg}(F)=m\right\}$, the set of all forms in n variables of degree m (also called set of n-ary m-ics forms), for $n, m \in \mathbb{N}$.
Convention: $0 \in \mathcal{F}_{n, m}$.
Definition 1.4. Let $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ of degree m. The homogenization of p w.r.t X_{n+1} is defined as

$$
p_{h}\left(X_{1}, \ldots, X_{n}, X_{n+1}\right):=X_{n+1}^{m} p\left(\frac{X_{1}}{X_{n+1}}, \ldots, \frac{X_{n}}{X_{n+1}}\right)
$$

Note that p_{h} is a homogeneous polynomial of degree m and in $n+1$ variables i.e. $p_{h} \in \mathcal{F}_{n+1, m}$.

Proposition 1.5. (1) Let $p(\underline{X}) \in \mathbb{R}\left[X_{1}, \ldots X_{n}\right], \operatorname{deg}(p)=m$, then

$$
\text { number of monomials of } p \leq\binom{ m+n}{n}
$$

(2) Let $F(\underline{X}) \in \mathcal{F}_{n, m}$, then
number of monomials of $F \leq N:=\binom{m+n-1}{n-1}$
Remark 1.6. $\mathcal{F}_{n, m}$ is a finite dimensional real vector space with $\mathcal{F}_{n, m} \simeq \mathbb{R}^{N}$.

2. PSD- AND SOS- POLYNOMIALS

Definition 2.1. (1) $p(\underline{X}) \in \mathbb{R}[\underline{X}]$ is positive semidefinite ($\mathbf{p s d}$) if

$$
p(\underline{x}) \geq 0 \forall \underline{x} \in \mathbb{R}^{n}
$$

(2) $p(\underline{X}) \in \mathbb{R}[\underline{X}]$ is sum of squares (SOS) if $\exists p_{i} \in \mathbb{R}[\underline{X}]$ s.t.

$$
p(\underline{X})=\sum_{i} p_{i}(\underline{X})^{2} .
$$

Notation 2.2. $\mathcal{P}_{n, m}:=$ set of all forms $F \in \mathcal{F}_{n, m}$ which are psd, and

$$
\sum_{n, m}:=\text { set of all forms } F \in \mathcal{F}_{n, m} \text { which are sos. }
$$

Lemma 2.3. If a polynomial p is psd then p has even degree.
Remark 2.4. From now on (using lemma 2.3) we will often write $\mathcal{P}_{n, 2 d}$ and $\sum_{n, 2 d}$.

Lemma 2.5. Let p be a homogeneous polynomial of degree 2 d , and p sos. Then every sos representation of p consists of homogeneous polynomials only, i.e.
$p(\underline{X})=\sum_{i} p_{i}(\underline{X})^{2} \Rightarrow p_{i}(\underline{X})$ homogenous of degree d, i.e. $p_{i} \in \mathcal{F}_{n, d}$.
Remark 2.6. The properties of psd-ness and sos-ness are preserved under homogenization (see the following lemma).

Lemma 2.7. Let $p(\underline{X})$ be a polynomial of degree m. Then
(1) p is psd iff p_{h} is psd,
(2) p is sos iff p_{h} is sos.

So we can focus our investigation of psdness of polynomials versus sosness of polynomials to those of forms, i.e. study and compare $\sum_{n, m} \subseteq \mathcal{P}_{n, m}$.

Theorem 2.8. (Hilbert) $\sum_{n, m}=\mathcal{P}_{n, m}$ iff
(i) $n=2$ [i.e. binary forms] or
(ii) $m=2$ [i.e. quadratic forms] or
(iii) $(n, m)=(3,4)$ [i.e. ternary quartics].

For the ternary quartics case $\left(\mathcal{F}_{3,4}\right)$, we shall study the convex cones $\mathcal{P}_{n, m}$ and $\sum_{n, m}$.

3. CONVEX SETS, CONES AND EXTREMALITY

Definition 3.1. A subset C of \mathbb{R}^{n} is convex set if $\underline{a}, \underline{b} \in C \Rightarrow \lambda \underline{a}+(1-\lambda) \underline{b} \in$ C, for all $0<\lambda<1$.

Proposition 3.2. The intersection of an arbitrary collection of convex sets is convex.

Notation 3.3. $\mathbb{R}_{+}:=\{x \in \mathbb{R} \mid x \geq 0\}$.
Definition 3.4. Let $\underline{c}_{1}, \ldots, \underline{c}_{k} \in \mathbb{R}^{n}$. A convex combination of $\underline{c}_{1}, \ldots, \underline{c}_{k}$ is any vector sum

$$
\alpha_{1} \underline{c}_{1}+\ldots+\alpha_{k} \underline{c}_{k}, \text { with } \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}_{+} \text {and } \sum_{i=1}^{k} \alpha_{i}=1
$$

Theorem 3.5. A subset $C \subseteq \mathbb{R}^{n}$ is convex if and only if it contains all the convex combinations of its elements.

Proof. (\Leftarrow) clear
(\Rightarrow) Let $C \subseteq \mathbb{R}^{n}$ be a convex set. By definition C is closed under taking convex combinations with two summands. We show that it is also closed under finitely many summands.
Let $k>2$. By Induction on k, assuming it true for fewer than k.
Given a convex combination $\underline{c}=\alpha_{1} \underline{c}_{1}+\ldots+\alpha_{k} \underline{c}_{k}$, with $\underline{c}_{1}, \ldots, \underline{c}_{k} \in C$
Note that we may assume $0<\alpha_{i}<1$ for $i=i, \ldots, k$; otherwise we have fewer than k summands and we are done.
Consider $\underline{d}=\frac{\alpha_{2}}{1-\alpha_{1}} \underline{c}_{2}+\ldots+\frac{\alpha_{k}}{1-\alpha_{1}} \underline{c}_{k}$
we have $\frac{\alpha_{2}}{1-\alpha_{1}}, \ldots, \frac{\alpha_{k}}{1-\alpha_{1}}>0$ and $\frac{\alpha_{2}}{1-\alpha_{1}}+\ldots+\frac{\alpha_{k}}{1-\alpha_{1}}=1$

Thus \underline{d} is a convex combination of $k-1$ elements of C and $\underline{d} \in C$ by induction. Since $\underline{c}=\alpha_{1} \underline{c}_{1}+\left(1-\alpha_{1}\right) \underline{d}$, it follows that $\underline{c} \in C$.

Definition 3.6. The intersection of all convex sets containing a given subset $S \subseteq \mathbb{R}^{n}$ is called the convex hull of S and is denoted by $\operatorname{cvx}(S)$.

Remark 3.7. The convex hull of $S \subseteq \mathbb{R}^{n}$ is a convex set and is the uniquely defined smallest convex set containing S.

Theorem 3.8. For any $S \subseteq \mathbb{R}^{n}$, $\operatorname{cvx}(S)=$ the set of all convex combinations of the elements of S.

Proof. (\supseteq) The elements of S belong to $\operatorname{cvx}(S)$, so all their convex combinations belong to $\operatorname{cvx}(S)$ by Theorem 3.5.
(\subseteq) On the other hand we observe that the set of convex combinations of elements of S is itself a convex set:
let $\underline{c}=\alpha_{1} \underline{c}_{1}+\ldots+\alpha_{k} \underline{c}_{k}$ and $\underline{d}=\beta_{1} \underline{d}_{1}+\ldots+\beta_{l} \underline{d}_{l}$, where $\underline{c}_{i}, \underline{d}_{i} \in S$, then
$\lambda \underline{c}+(1-\lambda) \underline{d}=\lambda \alpha_{1} \underline{c}_{1}+\ldots+\lambda \alpha_{k} \underline{c}_{k}+(1-\lambda) \beta_{1} \underline{d}_{1}+\ldots+(1-\lambda) \beta_{l} \underline{d}_{l}, 0 \leq \lambda \leq 1$ is
just another convex combination of elements of S.
So by minimality property of $\operatorname{cvx}(S)$, it follows that $\operatorname{cvx}(S) \subseteq$ the set of all convex combinations of the elements of S.

Corollary 3.9. The convex hull of a finite subset $\left\{\underline{s}_{1}, \ldots, \underline{s}_{k}\right\} \subseteq \mathbb{R}^{n}$ consists of all the vectors of the form $\alpha_{1} \underline{s}_{1}+\ldots+\alpha_{k} \underline{s}_{k}$ with $\alpha_{1}, \ldots, \alpha_{k} \geq 0$ and $\sum_{i} \alpha_{i}=1$.

Definitions 3.10. (1) A set which is the convex hull of a finite subset of \mathbb{R}^{n} is called a convex polytope, i.e. $C \subseteq \mathbb{R}^{n}$ is a convex polytope if $C=$ $\operatorname{cvx}(S)$ for some finite $S \subseteq \mathbb{R}^{n}$.
(2) A point in a polytope is called a vertex if it is not on the line segment joining any other two distinct points of the polytope.

Remark 3.11. (1) Convex polytope is necessarily closed and bounded, i.e. compact.
(2) A convex polytope is always the convex hull of its vertices.

More general version for compact sets is the Krein Milman theorem:
Theorem 3.12. (Krein-Milman) Let $C \subseteq \mathbb{R}^{n}$ be a compact and convex set. Then C is the convex hull of its extreme points.
Definitions 3.13. $\underline{x} \in C$ is extreme if $C \backslash\{\underline{x}\}$ is convex.

