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1. GENERALITIES ABOUT POLYNOMIALS

Definition 1.1. For a polynomial p ∈ R[X1, . . . , Xn], we write

p(X) =
∑
i∈Zn

+

ci X
i ; ci ∈ R,

where X i = X i1
1 . . . X

in
n is a monomial of degree = |i| =

n∑
k=1

ik and ci X
i is

a term.

Definition 1.2. A polynomial p(X) ∈ R[X] is called homogeneous or
form if all terms in p have the same degree.

Notation 1.3. Fn,m :=
{
F ∈ R[X1, . . . , Xn] | F is a form and deg(F ) = m

}
,

the set of all forms in n variables of degree m (also called set of n-ary m-ics
forms), for n,m ∈ N.

Convention: 0 ∈ Fn,m.

Definition 1.4. Let p ∈ R[X1, . . . , Xn] of degree m. The homogenization
of p w.r.t Xn+1 is defined as

ph(X1, . . . , Xn, Xn+1) := Xm
n+1 p

(
X1

Xn+1

, . . . ,
Xn

Xn+1

)
Note that ph is a homogeneous polynomial of degree m and in n+1 variables
i.e. ph ∈ Fn+1,m.

Proposition 1.5. (1) Let p(X) ∈ R[X1, ...Xn], deg(p) = m, then
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number of monomials of p ≤
(
m+n
n

)
(2) Let F (X) ∈ Fn,m, then

number of monomials of F ≤ N :=
(
m+n−1
n−1

)
�

Remark 1.6. Fn,m is a finite dimensional real vector space with Fn,m ' RN .

2. PSD- AND SOS- POLYNOMIALS

Definition 2.1. (1) p(X) ∈ R[X] is positive semidefinite (psd) if

p(x) ≥ 0 ∀ x ∈ Rn.

(2) p(X) ∈ R[X] is sum of squares (SOS) if ∃ pi ∈ R[X] s.t.

p(X) =
∑
i

pi(X)2.

Notation 2.2. Pn,m := set of all forms F ∈ Fn,m which are psd, and∑
n,m := set of all forms F ∈ Fn,m which are sos.

Lemma 2.3. If a polynomial p is psd then p has even degree. �

Remark 2.4. From now on (using lemma 2.3) we will often write Pn,2d and∑
n,2d.

Lemma 2.5. Let p be a homogeneous polynomial of degree 2d, and p sos.
Then every sos representation of p consists of homogeneous polynomials only,
i.e.

p(X) =
∑
i

pi(X)2 ⇒ pi(X) homogenous of degree d, i.e. pi ∈ Fn,d. �

Remark 2.6. The properties of psd-ness and sos-ness are preserved under
homogenization (see the following lemma).

Lemma 2.7. Let p(X) be a polynomial of degree m. Then

(1) p is psd iff ph is psd,

(2) p is sos iff ph is sos. �

So we can focus our investigation of psdness of polynomials versus sosness
of polynomials to those of forms, i.e. study and compare

∑
n,m ⊆ Pn,m .
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Theorem 2.8. (Hilbert)
∑

n,m = Pn,m iff

(i) n = 2 [i.e. binary forms] or

(ii) m = 2 [i.e. quadratic forms] or

(iii) (n,m) = (3, 4) [i.e. ternary quartics].

For the ternary quartics case (F3,4), we shall study the convex cones Pn,m

and
∑

n,m.

3. CONVEX SETS, CONES AND EXTREMALITY

Definition 3.1. A subset C of Rn is convex set if a, b ∈ C ⇒ λa+(1−λ)b ∈
C, for all 0 < λ < 1.

Proposition 3.2. The intersection of an arbitrary collection of convex sets
is convex.

Notation 3.3. R+ := {x ∈ R | x ≥ 0}.

Definition 3.4. Let c1, . . . , ck ∈ Rn. A convex combination of c1, . . . , ck
is any vector sum

α1c1 + . . .+ αkck, with α1, . . . , αk ∈ R+ and
k∑

i=1

αi = 1.

Theorem 3.5. A subset C ⊆ Rn is convex if and only if it contains all the
convex combinations of its elements.

Proof. (⇐) clear

(⇒) Let C ⊆ Rn be a convex set. By definition C is closed under taking
convex combinations with two summands. We show that it is also closed
under finitely many summands.

Let k > 2. By Induction on k, assuming it true for fewer than k.

Given a convex combination c = α1c1 + . . .+ αkck, with c1, . . . , ck ∈ C
Note that we may assume 0 < αi < 1 for i = i, . . . , k; otherwise we have
fewer than k summands and we are done.

Consider d =
α2

1− α1

c2 + . . .+
αk

1− α1

ck

we have
α2

1− α1

, . . . ,
αk

1− α1

> 0 and
α2

1− α1

+ . . .+
αk

1− α1

= 1
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Thus d is a convex combination of k−1 elements of C and d ∈ C by induction.

Since c = α1c1 + (1− α1)d, it follows that c ∈ C. �

Definition 3.6. The intersection of all convex sets containing a given subset
S ⊆ Rn is called the convex hull of S and is denoted by cvx(S).

Remark 3.7. The convex hull of S ⊆ Rn is a convex set and is the uniquely
defined smallest convex set containing S.

Theorem 3.8. For any S ⊆ Rn,
cvx(S) = the set of all convex combinations of the elements of S.

Proof. (⊇) The elements of S belong to cvx(S), so all their convex combina-
tions belong to cvx(S) by Theorem 3.5.

(⊆) On the other hand we observe that the set of convex combinations of
elements of S is itself a convex set:

let c = α1c1 + . . .+ αkck and d = β1d1 + . . .+ βldl, where ci, di ∈ S, then

λc+(1−λ)d = λα1c1+ . . .+λαkck +(1−λ)β1d1+ . . .+(1−λ)βldl, 0 ≤ λ ≤ 1
is

just another convex combination of elements of S.

So by minimality property of cvx(S), it follows that cvx(S) ⊆ the set of all
convex combinations of the elements of S. �

Corollary 3.9. The convex hull of a finite subset {s1, . . . , sk} ⊆ Rn consists
of all the vectors of the form α1s1 + . . . + αksk with α1, . . . , αk ≥ 0 and∑
i

αi = 1. �

Definitions 3.10. (1) A set which is the convex hull of a finite subset of
Rn is called a convex polytope, i.e. C ⊆ Rn is a convex polytope if C =
cvx(S) for some finite S ⊆ Rn.

(2) A point in a polytope is called a vertex if it is not on the line segment
joining any other two distinct points of the polytope.

Remark 3.11. (1) Convex polytope is necessarily closed and bounded, i.e.
compact.

(2) A convex polytope is always the convex hull of its vertices.
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More general version for compact sets is the Krein Milman theorem:

Theorem 3.12. (Krein-Milman) Let C ⊆ Rn be a compact and convex
set. Then C is the convex hull of its extreme points. �
Definitions 3.13. x ∈ C is extreme if C \ {x} is convex.


