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1. CONVEX CONES AND GENERALIZATION OF KREIN MILMAN
THEOREM

We want to prove: P3,4 =
∑

3,4

(i.e each positive semidefinite form in 3 variables of degree 4 is a sum of
squares.)

To do it , we need several notions and intermediate results.

Definition 1.1. C ⊆ Rk is a convex cone if

x, y ∈ C ⇒ x+ y ∈ C, and

x ∈ C, λ ∈ R+ ⇒ λx ∈ C
(i.e if it is closed under addition and under multiplication by non-negative
scalars.)

Fact 1.2. C ⊆ Rk is a convex cone if and only if it is closed under non-
negative linear combinations of its elements, i.e.
∀ n ∈ N, ∀ x1, . . . , xn ∈ C, ∀ λ1, . . . , λn ∈ R+ : λ1x1 + . . .+ λnxn ∈ C.

Definition 1.3. Let S ⊆ Rk. Then

Cone(S) := {non-negative linear combinations of elements from S}
is the convex cone generated by S.

1



POSITIVE POLYNOMIALS LECTURE NOTES (07: 04/05/10) 2

Fact 1.4. For every S ⊆ Rk, Cone(S) is the smallest convex cone which
includes S.

Fact 1.5. If S ⊆ Rk is convex, then

Cone(S) := {λx | λ ∈ R+, x ∈ S}.

Definition 1.6. R ⊆ Rk is a ray if ∃ x ∈ Rk, x 6= 0 s.t.

R = {λx | λ ∈ R+} := x+

(A ray R is a half-line.)

Definition 1.7. Let C ⊆ Rk be a convex set:

(1) a point c ∈ C is an extreme point if C \ {c} is convex.

(2) a ray R ⊆ C is an extreme ray if C \R is convex.

Notation 1.8. Let C ⊆ Rk convex.

(1) ext(C) := set of all extreme points in C

(2) rext(C) := set of all extreme rays in C

Definition 1.9. (1) A straight line L ⊆ Rk is a translate of a 1-dimensional
subspace, i.e. L = {x+ λy | λ ∈ R}, for some x, y ∈ Rk, y 6= 0.

(2) C ⊆ Rk is line free if C contains no straight lines.

Theorem 1.10. (Klee) Let C ⊆ Rk be a closed line free convex set. Then

C = cvx
(
ext(C) ∪ rext(C)

)
Remark 1.11. (a) Let C ⊆ Rk be a convex cone and x ∈ C, x 6= 0. Then
x is not extreme.
Also x+ ⊂ C.

(b) Let C ⊆ Rk be a line free convex cone. Then ext(C) = {0}.

Proof. If not, then C \ {0} is not convex, so

∃ x, y ∈ C \ {0}, ∃ 0 < λ < 1 s.t. λx+ (1− λ)y /∈ C \ {0}.
But C is convex, so



POSITIVE POLYNOMIALS LECTURE NOTES (07: 04/05/10) 3

λx+ (1− λ)y = 0.

That means that x+ ∪ y+ is a straight line in C, a contradiction. �

Corollary 1.12. (Generalization of Krein-Milman to closed line free convex
cone)
Let C ⊆ Rk be a closed line free convex cone. Then

C = cvx
(
rext(C)

)
Proof. By Remark 1.11, ext(C) = {0}.
Applying Theorem 1.10, we get C = cvx

(
rext(C)

)
. �

Remark 1.13. Let C be a line free convex cone

(1) 0 6= x ∈ C belongs to an extreme ray (equivalently, the ray {λx | λ ∈ R+}
generated by x is extreme) if and only if

whenever x = x1 +x2 , with x1, x2 ∈ C, then xi = λix ; λi ∈ R+, λ1 +λ2 = 1
(i.e.

x1, x2 belong to the ray generated by x).

(2) The set of convex linear combinations of points in extremal rays = the
set of sums of points in extremal rays.

2. THE CONES Pn,2d and
∑

n,2d

Lemma 2.1. Pn,2d is a closed convex cone.

Proof. It is trivial that Pn,2d is a convex cone.

Next we prove that Pn,2d is closed:

Let (Pk)k∈N be a sequence in Pn,2d converging to P . Then for all x ∈
Rn, Pk(x)→ P (x).

We want (to show that) P ∈ Pn,2d,

otherwise ∃ x0 ∈ Rn, s.t. P (x0) = −ε, ε > 0.

And since Pk(x0) → P (x0) in Rn, ∀ ε > 0,∃ m ∈ N s.t ∀ k > m : |Pk(x0) −
P (x0)| < ε,

thus (taking the same ε as above): |Pk(x0) + ε| < ε ⇒ Pk(x0) < 0, a con-
tradiction (since Pk ∈ Pn,2d ∀ k). So, P ∈ Pn,2d and hence Pn,2d is closed.
�
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Lemma 2.2. The cone Pn,2d is line free.

Proof. Suppose not, then there exists a straight line L in Pn,2d.

Write L = {F + λG | λ ∈ R}; F,G ∈ Pn,2d, G 6= 0.

Since −G /∈ Pn,2d, take x0 s.t. −G(x0) < 0.

Then for (large enough λ i.e.) λ→ −∞ we have F (x0) + λG(x0) < 0
⇒ L * Pn,2d.

Hence Pn,2d is line free. �

Corollary 2.3. Pn,2d is the convex hull of its extremal rays.

Proof. By Lemma 2.1 and Lemma 2.2, Pn,2d is a line free closed convex cone.
And therefore by the generalization of Krein-Milmann (Corollary 1.12) it is
the convex hull of its extremal rays. �

Definition 2.4. A form F ∈ Pn,2d is extremal in Pn,2d if

F = F1 + F2, F1, F2 ∈ Pn,2d ⇒ Fi = λiF ; i = 1, 2 for λi ∈ R+ satisfying
λ1 + λ2 = 1.

Similar definition for
∑

n,2d.

Note 2.5. By Remark 1.13 this just means that the ray generated by F is
extremal.

Remark 2.6. (1) F ∈
∑

n,2d extremal ⇒ F = G2 for some G ∈ Fn,d.

(2) The converse of (1) is not true in general.

For example: (x2 + y2)2 = (x2 − y2)2 + (2xy)2 is not extremal in
∑

2,4.

(3) G2 is extremal in
∑

n,2d ; G2 is extremal in Pn,2d.

For instance Choi et al showed that

p := f 2, where f(x, y, z) = x4y2 + y4z2 + z4x2− 3x2y2z2 + (x2y+ y2z− z2x−
xyz)2 is extremal in

∑
3,12 but not in P3,12.

Notation 2.7. We denote by E(Pn,2d) the set of all extremal forms in Pn,2d.

Lemme 2.8. Let E ∈ Pn,2d. Then
E ∈ E(Pn,2d) if and only if ∀ F ∈ Pn,2d with E ≥ F ∃ α ∈ R+ such that
F = αE.
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Proof. (⇒) Let E ∈ E(Pn,2d), F ∈ Pn,2d s.t E ≥ F , then

G := E − F ∈ Pn,2d , so E = F +G.

Since E is extremal ∃ α, β ≥ 0, α + β = 1 such that F = αE and G = βE.

(⇐) Let F1, F2 ∈ Pn,2d so that E = F1 + F2, then E ≥ F1, so ∃ α ≥ 0 such
that

F1 = αE. Therefore F2 = E − F1 = (1 − α)E with 1 − α ≥ 0 (since
E,F2 ∈ Pn,2d).

Thus E is extremal. �

Corollary 2.9. Every F ∈ Pn,2d is a finite sum of forms in E(Pn,2d).

Proof. By Corollary 2.3 and Remark 1.13 (2). �

3. PROOF OF P3,4 =
∑

3,4

Corollary 2.9 is the first main item in the proof of Hilbert’s Theorem (The-
orem 2.8 of lecture 6) for the ternary quartic case. The second main item is
the following lemma (which will be proved in the next lecture):

Lemma 3.1. Let T (x, y, z) ∈ P3,4. Then ∃ a quadratic form q(x, y, z) 6= 0
s.t. T ≥ q2, i.e. T − q2 is psd.

Theorem 3.2. P3,4 =
∑

3,4

Proof. Let F ∈ P3,4 . By Corollary 2.9,

F = E1 + . . .+ Ek, where Ei is extremal in P3,4 for i = 1, . . . , k.

Applying Lemma 3.1 to each Ei we get

Ei ≥ q2i , for some quadratic form qi 6= 0

Since Ei is extremal, by Lemma 2.8, we get

q2i = αiEi ; for some αi > 0, ∀ i = 1, . . . , k

and so Ei =
( 1
√
αi

qi

)2
and hence F ∈

∑
3,4. �


