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1. Proof of Hilbert’s theorem 1

1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Recall Theorem 2.8 of lecture 6) (Hilbert) > = =
Prm iff

(i)n=2or
(i) m =2 or
(iif) (n,m) = (3,4).
In lecture 7 (Theorem 3.2) we showed the proof of (Hilbert’s) Theorem 1.1

part (iii), i.e. for ternary quartic forms: P34 = >, , using generalization of
Krein-Milman theorem (applied to our context), plus the following lemma:

Lemma 1.2. (3.1 of lecture 7) Let T(x,y,2) € P34. Then 3 a quadratic
form q(z,y,2) #0s.t. T > ¢* ie. T — ¢* is psd.

Proof. Consider three cases concerning the zero set of T.

Case 1. T > 0, i.e. T has no non trivial zeros.
Let

¢($,y,z) = T(x,y,z)

(22 +y? + 22)%’

vV (x,y,2) #0.

Let p:= i§12f¢ > 0, where S? is the unit sphere.
Since S? is compact and ¢ is continous, 3 (a,b,¢) € S? s.t. u = ¢(a,b,c) >0
Therefore V (z,y,2) € S*: T(z,y,2) > u(x? + y* + 2%)2
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Claim: T'(x,y,z) > pu(z? +y* + 22)? for all (z,y,2) € R3.
Indeed, it is trivially true at the point (0,0,0), and

£ 3 — 2 2 2 (ﬁ Y i) 2
or (z,y,2) € R*\ {0} denote N := /2% + y? + 22, then NN N € S7,
which implies that

2
X z T\ 2 2 2\ 2
(5dm) = (B ()
So, by homogeneity we get
T(z,y,2) > pla? +y* + 2% = <\/ﬁ(x2 + 3 + z2)>2, as claimed.
O(Casel)

Case 2. T has exactly one (nontrivial) zero.
By changing coordinates, we may assume w.l.o.g. that zero to be (1,0,0),
ie. T(1,0,0) =0.
Writing T as a polynomial in = one gets

T(z,y,2) = az’ + (biy + ba2)2® + f(y, 2)2® + 29(y, 2)z + h(y, 2),
where f, g and h are binary quadratic, cubic and quartic forms respectively.
Reducing T": Since 7'(1,0,0) = 0 we get a = 0.
Further, suppose (b, bs) # (0,0), it = 3 (yo, 20) € R? s.t byyo + bazg < 0,
then
taking x big enough = T'(z¢, Yo, 20) < 0, a contradiction to 7" > 0. Thus
by = by = 0 and therefore

T(z,y,2) = f(y,2)z* + 29(y, 2)x + h(y, 2) (1)

Next, clearly h(y, z) > 0 [since otherwise T'(0, yo, 20) = h(yo, 20) < 0 for some
(v0, 20) € R?, a contradiction].

Also f(y, z) > 0, if not, say f(yo, z0) < 0 for some (yo, 29), then taking z big
enough we get T'(x, 4o, z0) < 0, a contradiction.

Thus f,h > 0.
From (1) we can write:
fT(z,y.2) = (zf + 9)° + (fh = ¢°) (2)

Claim: fh—g¢*>>0

If not, say (fh —g*)(yo, 20) <0 for some (yo, 29). Then there are two cases
to be considered here:

Case (i): f(yo,20) = 0. In this case we claim ¢(yo,29) = 0 because if not
then T'(x, yo, 20) = 29(yo, 20)T + h(Yo, 20) < 0 and we take |zo| large enough



POSITIVE POLYNOMIALS LECTURE NOTES (08: 06/05,/10) 3

so that 2g(yo, 20)To + h(yo, 20) < 0, a contradiction.
Case (ii): f(yo,20) > 0, we take |zo| such that zof(yo, 20) + 9(¥0,20) = 0,
then fT(xo,%0,20) = (fh — g*)(yo, 20) < 0, a contradiction.

So our claim is established and fh — g* > 0.
Now the polynomial f is a psd binary form, thus by Lemma 1.3 below f is
sum of two squares. Let us consider the two subcases:

Case 2.1. f is a perfect square. Then f = f2, with f; = by + cz for some
b,c € R. Up to multiplication by a constant (—c, b) is the unique zero of f;
and so of f. Thus

(fh = g*)(=c,b) = =(g(=¢,0))* <0
which is a contradiction unless g(—c,b) = 0 which means ! that f; | g, i.e.
9(y,2) = fily, 2)q1(y, z). Then from (2) we get
fT>(zf+g)
= (zfi> + fig1)?
= fi¥(zfi + ¢)*
= flzfi+q1)*
Hence T > (zf1 + g1)? as required.

Case 2.2. f = f2 + f2, with f1, f> linear in y, z.

Now f1 Z Afy [otherwise we are in Case 2.1]

i.e. f1, fo don’t have same non-trivial zeroes, otherwise they would be mul-
tiples of each other and f would be a perfect square. Hence f > 0.

Claim 1: fh—¢*> >0

If not, ie. if 3 (yo,20) # (0,0) s.t. (fh — g*)(yo, 20) = 0, then (yo, 20)

9(Yo, 20) Yo, Zo) of T', which contradicts
f (ym Zo)

our hypothesis that T has only 1 zero (1,0,0). Thus fh — g? > 0.

could be completed to a zero ( -

h — g?
3

Claim 2: / has a minimum g > 0 on the unit circle S. (clear)

So, just as in Case 1,
fh—g*>uf? ¥ (y,z) e R
= fT > fh—g*> uf?, by (2)

1See (5) implies (2) of Theorem 4.5.1 in Real Algebraic Geometry by J. Bochnak, M.
Coste, M.-F. Roy or (5) implies (2) of Theorem 12.7 in Positive Polynomials and Sum of
Squares by M. Marshall.
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=T>puf?= (\/ﬁf)z, as claimed. [(Case 2)

Case 3. T has more than one zero.

Without loss of generality, assume (1,0,0) and (0,1,0) are two of the zeros
of T.

As in case 2, reduction = T is of degree at most 2 in z as well as in y and
SO we can write:
T(x,y,2) = f(y,2)a* + 29(y, z)zz + 2*h(y, 2),
where f, g, h are quadratic forms and f,h > 0.
And so

fT = (2f +29)* + 2*(fh — ¢%), (3)
with fh — ¢g? > 0 [Indeed, if (fh — g*)(yo, 20) < O for some (yo, 20), then
we must have case distinction as on bottom of page 2 i.e. f(yo,20) = 0 or

f (o, z0) > 0].

Using Lemma 1.3 if f or h is a perfect square, then we get the desired result
as in the Case 2.1. Hence we suppose f and h to be sum of two squares
and again as before (as in Case 2.2) f,h > 0. We consider the following
two possible subcases on fh — g%

Case 3.1. Suppose fh — g* has a zero (yo, 20) # (0,0).

g(y07Z0) and
f(y0720)
Ty :=T(z+ x02,y,2) = 22f + 2x2(g + 2o f) + 2°(h + 2209 + 22f)  (4)

Set xg = —

Evaluating (3) at (x + z02,y, 2), we get

2 !/
fTi = fT(@ + 302,y 2) = (@ +20)f +29) +22(fh - g*), 3)
Multyplying (4) by f, we get
STy = [T(x + woz,y, 2) = 22 + 202 f(g + wof) + 22f (h + 209 + a3 f)
(4)
Now compare the coefficients of 22 in (3)" and (4) to get
(wof +9)* + (fh— g°) = f(h + 2z0g + 23 ),

fh—g°) + (xof + 9)*
: >f(“ L v o) £ 00
In particular, h 4+ 2xog + 23 f is psd and has a zero, namely (yo, z9) # (0, 0).

ie. h+2x0g+aif =

Thus (h + 2x0g + 3 f), being a psd quadratic in y, z, which has a nontrivial
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zero (Yo, 20), is a perfect square [since by the arguments similar to Case 2.2,
it cannot be a sum of two (or more) squares].

Say (h+ 2xog + x2f) = h?, with hy(y, ) linear and hy(yo, 2z9) = 0

Now (g + xof) (Yo, 20) = 9(Yo, 20) + Zof (Yo, 20) = 0. So, g + xof vanishes at
every zero of the linear form h,. Therefore, we have g+ xof = g1hy for some

g1-
So (from (4)), Ty = fa? + 2z2g1hy + 2203
= (zh1 + zg1)* + 2°(f — 9})

= hiTy = hi(zhy + zg1)* + 2? (h%f - (hlgl)Z)

= h2(zhy +291)? + 2% (hf — %)

N—_——
>0

= h%Tl Z h%(Zhl + Zﬂgl)z
= T(r +202,y,2) = Th > (21 + 1)

By change of variables (x — x — x¢2), we get T' > a square of a quadratic
form, as desired.

Case 3.2. Suppose fh — g* > 0 (i.e. fh — g* has no zero).

Then (as in Case 2.2), 3 u > 0 s.t % > pon S
and so fh—g?> > py? +22)f V (y,2) € R
Hence, by (3) we get
T = (zf +29)% + 22 (fh — ¢*)
N
> 2%(fh—¢%) "
> pz?(y* + 2°) f,
giving as required
T > (Vpey)* + (uz?)?
=T > (\/pz%)? [(Case 3)
This completes the proof of the Lemma 1.2. (N

Next we prove Theorem 1.1 part (i), i.e. for binary forms. This was also
used as a helping lemma in the proof of above lemma:
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Lemma 1.3. If f is a binary psd form of degree m, then f is a sum of
squares of binary forms of degree m/2, that is, Py = >, ,, - In fact, f is
sum of two squares.

Proof. If f is a binary form of degree m, we can write

fla,y) =D az*y" ™" o R
k=0

m k
T
:ym E Ce | — )
k=0 k<y>

where m is an even number and ¢, # 0, since f is psd.

Without loss of generality let ¢, = 1.

Put ¢(t) = Z ct”.
k=0

m/2
Over C, ¢g(t) = H(t — 26)(t — Zk); 2k = ag +iby, ai, by, € R
k=1
m/2
- H ((t —ap)* + bi)
k=1

m/2

= f(z,y) = ymg(g) =11 ((w — ary)® + bigﬁ).

Then, using iteratively the identity
(X2 4+ Y2)(Z2 4+ W?) = (XZ - YW)2+ (YZ + XW)2,
we obtain that f(x,y) is a sum of two squares. O

Example 1.4. Using the ideas in the proof of above lemma, we write the
binary form

f(z,y) = 22° 4+ y® — 3aty?
as a sum of two squares:

Consider f written in the form

fla,y) = (26)6 +1 —3(3)4)

The polynomial g(t) = 2t5 — 3t* +1. This polynomial has double roots 1 and
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1
—1 and complex roots +—i.
b V2
Thus
1
g(t) =2(t = 1)*(t + 1)*(t* + 5) = 2 — 1222 + 1).
Therefore, we have

x
fla,y) = y6g(§) = (2* = y")* (22" +y°) = 207(2" — ") + (2" — )’
written as a sum of two squares. |

Next we prove Theorem 1.1 part (ii), i.e. for quadratic forms:

Lemma 1.5. If f(z1,...,,2,) is a psd quadratic form, then f(z1,...,,z,)
is sos of linear forms, that is, Pno =), .

Proof. It f(z1,...,2,) is a quadratic form, then we can write
n
flz,... x,) = Z r;a;;x;, where A = [a;;] is a symmetric matrix with
ij=1
Qg5 € R.

We have f = XTAX, where X7 = [z1,...2,].

By the spectral theorem for Hermitian matrices, there exists a real orthogonal
matrix S and a diagonal matrix D = diag(dy, ..., d,) such that D = STAS.
Then

f=XTSSTA SSTX = (STX)TSTA S (STX).
Putting Y = [y, ..., vy, = STX, we get
f=YTSTASY =YTDY = dy® d eR.
=1

Since f is psd, we have d; > 0 V i, and so

/= zn: (\/d_lyz>2
i=1
Thus,
2

flzy, ... x,) = Z (@(sl,ixl + ...+ smxn)> ,

=1

that is, f is sos of linear forms. O



