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1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Recall) (Hilbert) >° =Py, iff
(i) n=2or
(i) m=2or
(iii) (n,m) = (3,4).

And in all other cases > = C Pum -

n,m -+

Note that here m is necessarily even because a psd polynomial must have
even degree (see Lemma 2.3 in lecture 6).

We have shown one direction (<) of Hilbert’s Theorem (1.1 above), i.e.
ifn=2orm=2or (n,m)=(3,4), then > =P, To prove the other

direction we have to show that:
> C Pnm forall pairs (n,m) s.t. n > 3,m >4 (m even) with (n,m) #

(1)

(3,4).
Hilbert showed (using algebraic geometry) that ) ;¢ C Pagand Y, , C Paa.
This is a reduction of the general problem (1), indeed we have:

Lemma 1.2. If 3 ;¢ C Py and }_, , C Puy, then

1
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Yoo C P foralln>3,m>4 and (n,m) # (3,4), (m even).

n,m =

Proof. Clearly, given F' € Pppp — >, ., then F € Ppyj o — Znﬂ, ., for all
J=0.

Moreover, we claim: F' € Pn,m_zn,m = 23F € Py, ma2i—. Vi>0

n, m+21

Proof of claim: Assume for a contradiction that

k
fori=1 :E%F(ail,...,xn):ij?(wl,...,xn),
j=1

then L.H.S vanishes at 1 = 0, so R.H.S also vanishes at x; = 0.
So x1|f; ¥ j, so 3| f7 ¥ i. So, R.H.S is divisible by 27. Dividing both sides
by 7 we get a sos representation of F, a contradiction since F ¢ 3 . O

So we just need to show that: Y ., C Psg, and >, , C Paa.

Hilbert described a method (non constructive) to produce counter examples
in the 2 crucial cases, but no explicit examples appeared in literature for next
80 years.

In 1967 Motzkin presented a specific example of a ternary sextic form that
is positive semidefinite but not a sum of squares.

2. THE MOTZKIN FORM

Proposition 2.1. The Motzkin form
M(z,y,z) = 2° + a%y® + 2y — 32%y?2% € Py — Y 44

Proof. Using the arithmetic geometric inequality (Lemma 2.2 below) with

a1 = 25, a0 = 2*y?, a3 = 2%y and a; = = a3 = 3’ clearly gives M > 0.

Degree arguments and exercise 3 of UB 6 from Real Algebraic Geometry

course (WS 2009-10) gives M is not a sum of squares O
Lemma 2.2. (Arithmetic-geometric inequality I) Let a1, az,...,a, >0
;n > 1. Then

ay+as+ ...+ ay
n

3=

Z (a1a2 Ce an)

Lemma 2.3. (Arithmetic-geometric inequality II) Let o; > 0, a; > 0;

1=1,...,n with Zai: 1.Then

=1
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aja; + ...+ aga, —ait.oooal >0

n

(with equality iff all the x; are equal).

Proof. Exercise 2 in UB 5.

3. ROBINSON’S METHOD (1970)

In 1970’s R. M. Robinson gave a ternary sextic based on the method described
by Hilbert, but after drastically simplifying Hilbert’s original ideas. He used
it to construct examples of forms in Py 4 — ), , as well as forms in Pz g—> 54

This method is based on the following lemma:

Lemma 3.1. A polynomial P(z,y) of degree at most 3 which vanishes at
eight of the nine points (z,y) € {—1,0,1} x {—1,0,1} must also vanish at
the ninth point.

Proof. Assign weights to the following nine points:
1, ifx,y==+1
w(z,y) =< =2, if (x==x1,y=0)or (z =0,y = £1)
4 ifx,y=0

Define the weight of a monomial as:
9

w(zkyl) = Zw(qi)xkyl(qi) , for ¢; €{-1,0,1} x {-1,0,1}

i=1
Define the weight of a polynomial P(x,y) = Z cry 2y as:
kel

w(P) = Z cr w(zty)

k.l
Claim 1: w(z*y") = 0 unless k and [ are both strictly positive and even.

Proof of claim 1: Let us compute the monomial weights

e if k=0, > 0: then we have
w(zby) =1+ (=) '+ 14+ (=)' + (=2) + (=2)(-1)! =0

e if | =0,k > 0: then similarly we have w(z*y') =0, and
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e if k1 > 0: then we have
0, if either k or [ is odd

w(aty') = 1+ (=)' + (=D + (=)' = .
4 | otherwise

O (claim 1)
9

Claim 2: w(P) = ZW(Qi)P(Qi)

=1

9
Proof of claim 2: w(P) := Z cry w(zky') = Z Chl Z w(q)x*y (q;)
kol ol i=1
9
w(g:) Y ey (@) = ) wla) Pla)
kol

=1

9

=1

O (claim 2)
Now, claim 1 and definition of w(P) = if deg(P(z,y)) <3 then w(P) = 0.

Also, from claim 2 we get:
P(1,1)+P(1,-1)+P(-1,1)+P(—1,-1)+(=2)P(1,0)+(—2)P(—1,0)+
(—=2)P(0, 1)+
(—=2)P(0,—1)+4P(0,0) =0

Now verify that if P(x,y) = 0 for any eight (of the nine) points, then we are
left with aP(z,y) = 0 (for some o # 0, « = +1, £2) at the ninth point. [

4. THE ROBINSON FORM

Theorem 4.1. Robinsons form R(z,y,2) = 2 + y% + 20 — (z'y? + 2122 +
yha? + yt2 24
2*a? + 2%y?) 4 32”y*2? is psd but not a sos, i.e. R € Pyg— Y 54 -
Proof. Consider the polynomial
P(r,y) = (2 +y* = (@* = y)* + (2* = 1)(y* — 1) (2)
Note that R(z,y,z) = Py(z,y,2) = 2°P(z/2,y/2).
By our observation: P, is psd iff P psd; P, is sos iff P is sos,
We shall show that P(z,y) is psd but not sos.
Multiplying both sides of (2) by (2? + y* — 1) and adding to (2) we get:
(22 +y*)P(z,y) = 2°(2* = 1)* +y°(y* — 1)* + (2* +y* — 1)*(2? — »*)* (3)
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From (3) we see that P(z,y) > 0, i.e. P(x,y) is psd.

Assume P(x,y) = Z Pj(x,y)? is sos
J

degP(z,y) =6, so degP; <3V j.

By (2) it is easy to see that P(0,0) = 1 and P(z,y) = 0 for all other eight
points (z,y) € {—1,0,1}*\ {(0,0)}, therefore every P;(x,y) must also vanish
at these eight points.

Hence by Lemma 3.1 (above) it follows that: P;(0,0) =0V j.
So P(0,0) = 0, which is a contradiction. O

Proposition 4.2. The quarternary quartic Q(z,y, z,w) = w*+z%y*+y?22+
122% — dayzw is psd, but not sos, i.e., Q € Pyg— Y 4, -

Proof. The arithmetic-geometric inequality (Lemma 2.3) clearly implies @) >
0.

Assume now that ) = Z q? . G € Fug .
J

Forms in F, 9 can only have the following monomials:

2,2
LW XY, T2, TW, Y2, YW, ZW

2 2
:Ll ) y ) 'Z
If 2% occurs in some of the g;, then z* occurs in ¢? with positive coefficient

and hence in Z qu. with positive coefficient too, but this is not the case.

Similarly ¢; does not contain y* and 22.

The only way to write x?w? as a product of allowed monomials is z2w? =
(zw)?.
Similarly for y?w? and z?w?.

Thus each g; involves only the monomials zy, xz, yz and w?.

But now there is no way to get the monomial zyzw from Zq?, hence a

J
contradiction.

O

Proposition 4.3. The ternary sextic S(z,y, z) = aty?+y*22+ 2422 —32%y?22
is psd, but not a sos, i.e., S € Pag— D 54

Proof. Exercise 3 of UB 5. OJ



