POSITIVE POLYNOMIALS LECTURE NOTES (09: 10/05/10)

SALMA KUHLMANN

Contents

1. Proof of Hilbert's Theorem (continued) 1
2. The Motzkin Form 2
3. Robinson Method (1970) 3
4. The Robinson Form 4

1. PROOF OF HILBERT'S THEOREM (Continued)

Theorem 1.1. (Recall) (Hilbert) $\sum_{n, m}=\mathcal{P}_{n, m}$ iff
(i) $n=2$ or
(ii) $m=2$ or
(iii) $(n, m)=(3,4)$.

And in all other cases $\sum_{n, m} \subsetneq \mathcal{P}_{n, m}$.
Note that here m is necessarily even because a psd polynomial must have even degree (see Lemma 2.3 in lecture 6).

We have shown one direction (\Leftarrow) of Hilbert's Theorem (1.1 above), i.e. if $n=2$ or $m=2$ or $(n, m)=(3,4)$, then $\sum_{n, m}=\mathcal{P}_{n, m}$. To prove the other direction we have to show that:
$\sum_{n, m} \subsetneq \mathcal{P}_{n, m}$ for all pairs (n, m) s.t. $n \geq 3, m \geq 4$ (m even) with $(n, m) \neq$ $(3,4)$.

Hilbert showed (using algebraic geometry) that $\sum_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\sum_{4,4} \subsetneq \mathcal{P}_{4,4}$. This is a reduction of the general problem (1), indeed we have:

Lemma 1.2. If $\sum_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\sum_{4,4} \subsetneq \mathcal{P}_{4,4}$, then

$$
\sum_{n, m} \subsetneq \mathcal{P}_{n, m} \text { for all } n \geq 3, m \geq 4 \text { and }(n, m) \neq(3,4),(m \text { even })
$$

Proof. Clearly, given $F \in \mathcal{P}_{n, m}-\sum_{n, m}$, then $F \in \mathcal{P}_{n+j, m}-\sum_{n+j, m}$ for all $j \geq 0$.
Moreover, we claim: $F \in \mathcal{P}_{n, m}-\sum_{n, m} \Rightarrow x_{1}^{2 i} F \in \mathcal{P}_{n, m+2 i}-\sum_{n, m+2 i} \forall i \geq 0$ Proof of claim: Assume for a contradiction that
for $i=1 \quad x_{1}^{2} F\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{k} f_{j}^{2}\left(x_{1}, \ldots, x_{n}\right)$,
then L.H.S vanishes at $x_{1}=0$, so R.H.S also vanishes at $x_{1}=0$.
So $x_{1} \mid f_{j} \forall j$, so $x_{1}^{2} \mid f_{j}^{2} \forall i$. So, R.H.S is divisible by x_{1}^{2}. Dividing both sides by x_{1}^{2} we get a sos representation of F, a contradiction since $F \notin \sum_{n, m}$.

So we just need to show that: $\sum_{3,6} \subsetneq \mathcal{P}_{3,6}$, and $\sum_{4,4} \subsetneq \mathcal{P}_{4,4}$.
Hilbert described a method (non constructive) to produce counter examples in the 2 crucial cases, but no explicit examples appeared in literature for next 80 years.
In 1967 Motzkin presented a specific example of a ternary sextic form that is positive semidefinite but not a sum of squares.

2. THE MOTZKIN FORM

Proposition 2.1. The Motzkin form

$$
M(x, y, z)=z^{6}+x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2} z^{2} \in \mathcal{P}_{3,6}-\sum_{3,6} .
$$

Proof. Using the arithmetic geometric inequality (Lemma 2.2 below) with $a_{1}=z^{6}, a_{2}=x^{4} y^{2}, a_{3}=x^{2} y^{4}$ and $\alpha_{1}=\alpha_{2}=\alpha_{3}=\frac{1}{3}$, clearly gives $M \geq 0$.
Degree arguments and exercise 3 of ÜB 6 from Real Algebraic Geometry course (WS 2009-10) gives M is not a sum of squares

Lemma 2.2. (Arithmetic-geometric inequality I) Let $a_{1}, a_{2}, \ldots, a_{n} \geq 0$; $n \geq 1$. Then

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq\left(a_{1} a_{2} \ldots a_{n}\right)^{\frac{1}{n}} .
$$

Lemma 2.3. (Arithmetic-geometric inequality II) Let $\alpha_{i} \geq 0, a_{i} \geq 0$; $i=1, \ldots, n$ with $\sum_{i=1}^{n} \alpha_{i}=1$.Then

$$
\alpha_{1} a_{1}+\ldots+\alpha_{n} a_{n}-a_{1}^{\alpha_{1}} \ldots a_{n}^{\alpha_{n}} \geq 0
$$

(with equality iff all the x_{i} are equal).
Proof. Exercise 2 in ÜB 5 .

3. ROBINSON'S METHOD (1970)

In 1970's R. M. Robinson gave a ternary sextic based on the method described by Hilbert, but after drastically simplifying Hilbert's original ideas. He used it to construct examples of forms in $\mathcal{P}_{4,4}-\sum_{4,4}$ as well as forms in $\mathcal{P}_{3,6}-\sum_{3,6}$

This method is based on the following lemma:
Lemma 3.1. A polynomial $P(x, y)$ of degree at most 3 which vanishes at eight of the nine points $(x, y) \in\{-1,0,1\} \times\{-1,0,1\}$ must also vanish at the ninth point.

Proof. Assign weights to the following nine points:

$$
w(x, y)= \begin{cases}1, & \text { if } x, y= \pm 1 \\ -2, & \text { if }(x= \pm 1, y=0) \text { or }(x=0, y= \pm 1) \\ 4, & \text { if } x, y=0\end{cases}
$$

Define the weight of a monomial as:

$$
w\left(x^{k} y^{l}\right):=\sum_{i=1}^{9} w\left(q_{i}\right) x^{k} y^{l}\left(q_{i}\right), \text { for } q_{i} \in\{-1,0,1\} \times\{-1,0,1\}
$$

Define the weight of a polynomial $P(x, y)=\sum_{k, l} c_{k, l} x^{k} y^{l}$ as:

$$
w(P):=\sum_{k, l} c_{k, l} w\left(x^{k} y^{l}\right)
$$

Claim 1: $w\left(x^{k} y^{l}\right)=0$ unless k and l are both strictly positive and even.
Proof of claim 1: Let us compute the monomial weights

- if $k=0, l \geq 0$: then we have

$$
w\left(x^{k} y^{l}\right)=1+(-1)^{l}+1+(-1)^{l}+(-2)+(-2)(-1)^{l}=0
$$

- if $l=0, k \geq 0$: then similarly we have $w\left(x^{k} y^{l}\right)=0$, and
- if $k, l>0$: then we have

$$
w\left(x^{k} y^{l}\right)=1+(-1)^{l}+(-1)^{k}+(-1)^{k+l}= \begin{cases}0, & \text { if either } k \text { or } l \text { is odd } \\ 4, & \text { otherwise }\end{cases}
$$

$\square($ claim 1$)$
Claim 2: $w(P)=\sum_{i=1}^{9} w\left(q_{i}\right) P\left(q_{i}\right)$
Proof of claim 2: $w(P):=\sum_{k, l} c_{k, l} w\left(x^{k} y^{l}\right)=\sum_{k, l} c_{k, l} \sum_{i=1}^{9} w\left(q_{i}\right) x^{k} y^{l}\left(q_{i}\right)$

$$
=\sum_{i=1}^{9} w\left(q_{i}\right) \sum_{k, l} c_{k, l} x^{k} y^{l}\left(q_{i}\right)=\sum_{i=1}^{9} w\left(q_{i}\right) P\left(q_{i}\right)
$$

Now, claim 1 and definition of $w(P) \Rightarrow$ if $\operatorname{deg}(P(x, y)) \leq 3$ then $w(P)=0$.
Also, from claim 2 we get:

$$
\begin{aligned}
& P(1,1)+P(1,-1)+P(-1,1)+P(-1,-1)+(-2) P(1,0)+(-2) P(-1,0)+ \\
& (-2) P(0,1)+ \\
& \quad(-2) P(0,-1)+4 P(0,0)=0
\end{aligned}
$$

Now verify that if $P(x, y)=0$ for any eight (of the nine) points, then we are left with $\alpha P(x, y)=0$ (for some $\alpha \neq 0, \alpha= \pm 1, \pm 2)$ at the ninth point.

4. THE ROBINSON FORM

Theorem 4.1. Robinsons form $R(x, y, z)=x^{6}+y^{6}+z^{6}-\left(x^{4} y^{2}+x^{4} z^{2}+\right.$ $y^{4} x^{2}+y^{4} z^{2}+$
$\left.z^{4} x^{2}+z^{4} y^{2}\right)+3 x^{2} y^{2} z^{2}$ is psd but not a sos, i.e. $R \in \mathcal{P}_{3,6}-\sum_{3,6}$.
Proof. Consider the polynomial

$$
\begin{equation*}
P(x, y)=\left(x^{2}+y^{2}-1\right)\left(x^{2}-y^{2}\right)^{2}+\left(x^{2}-1\right)\left(y^{2}-1\right) \tag{2}
\end{equation*}
$$

Note that $R(x, y, z)=P_{h}(x, y, z)=z^{6} P(x / z, y / z)$.
By our observation: P_{h} is psd iff P psd; P_{h} is sos iff P is sos,
We shall show that $P(x, y)$ is psd but not sos.
Multiplying both sides of (2) by $\left(x^{2}+y^{2}-1\right)$ and adding to (2) we get:

$$
\left(x^{2}+y^{2}\right) P(x, y)=x^{2}\left(x^{2}-1\right)^{2}+y^{2}\left(y^{2}-1\right)^{2}+\left(x^{2}+y^{2}-1\right)^{2}\left(x^{2}-y^{2}\right)^{2}(3)
$$

From (3) we see that $P(x, y) \geq 0$, i.e. $P(x, y)$ is psd.
Assume $P(x, y)=\sum_{j} P_{j}(x, y)^{2}$ is sos
$\operatorname{deg} P(x, y)=6$, so $\operatorname{deg} P_{j} \leq 3 \forall j$.
By (2) it is easy to see that $P(0,0)=1$ and $P(x, y)=0$ for all other eight points $(x, y) \in\{-1,0,1\}^{2} \backslash\{(0,0)\}$, therefore every $P_{j}(x, y)$ must also vanish at these eight points.
Hence by Lemma 3.1 (above) it follows that: $P_{j}(0,0)=0 \forall j$.
So $P(0,0)=0$, which is a contradiction.
Proposition 4.2. The quarternary quartic $Q(x, y, z, w)=w^{4}+x^{2} y^{2}+y^{2} z^{2}+$ $x^{2} z^{2}-4 x y z w$ is psd, but not sos, i.e., $Q \in \mathcal{P}_{4,4}-\sum_{4,4}$.

Proof. The arithmetic-geometric inequality (Lemma 2.3) clearly implies $Q \geq$ 0 .

Assume now that $Q=\sum_{j} q_{j}^{2}, q_{j} \in \mathcal{F}_{4,2}$.
Forms in $\mathcal{F}_{4,2}$ can only have the following monomials:
$x^{2}, y^{2}, z^{2}, w^{2}, x y, x z, x w, y z, y w, z w$
If x^{2} occurs in some of the q_{j}, then x^{4} occurs in q_{j}^{2} with positive coefficient and hence in $\sum q_{j}^{2}$ with positive coefficient too, but this is not the case.
Similarly q_{j} does not contain y^{2} and z^{2}.
The only way to write $x^{2} w^{2}$ as a product of allowed monomials is $x^{2} w^{2}=$ $(x w)^{2}$.
Similarly for $y^{2} w^{2}$ and $z^{2} w^{2}$.
Thus each q_{j} involves only the monomials $x y, x z, y z$ and w^{2}.
But now there is no way to get the monomial $x y z w$ from $\sum_{j} q_{j}^{2}$, hence a contradiction.

Proposition 4.3. The ternary sextic $S(x, y, z)=x^{4} y^{2}+y^{4} z^{2}+z^{4} x^{2}-3 x^{2} y^{2} z^{2}$ is psd, but not a sos, i.e., $S \in \mathcal{P}_{3,6}-\sum_{3,6}$.

Proof. Exercise 3 of ÜB 5.

