POSITIVE POLYNOMIALS LECTURE NOTES (10: 18/05/10 - BEARBEITET 30/01/19)

SALMA KUHLMANN

Contents

1. Ring of formal power series	1
2. Algebraic independence	4

1. RING OF FORMAL POWER SERIES

Definition 1.1. (Recall) Let $S = \{g_1, \ldots, g_s\} \subseteq \mathbb{R}[X_1, \ldots, X_n]$, then

 $\mathbf{K}_{\mathbf{S}} := \left\{ x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0 \ \forall \ i = 1, \dots, s \right\},$ $\mathbf{T}_{\mathbf{S}} := \left\{ \sum_{e_{1},\dots,e_{s} \in \{0,1\}} \sigma_{e} \ g_{1}^{e_{1}} \dots g_{s}^{e_{s}} \mid \sigma_{e} \in \Sigma \mathbb{R}[\underline{X}]^{2}, e = (e_{1},\dots,e_{s}) \right\} \text{ is the preordering generated by } S.$

Proposition 1.2. Let $n \geq 3$. Let S be a finite subset of $\mathbb{R}[\underline{X}]$ such that $K_S \subseteq \mathbb{R}^n$ has non empty interior. Then $\exists f \in \mathbb{R}[\underline{X}]$ such that $f \geq 0$ on \mathbb{R}^n and $f \notin T_S$.

To prove proposition 1.2 we need to learn a few facts about formal power series rings:

Definition 1.3. $\mathbb{R}[[\underline{X}]] := \mathbb{R}[[X_1, \ldots, X_n]]$ ring of formal power series in $\underline{X} = (X_1, \ldots, X_n)$ with coefficients in \mathbb{R} , i.e. , $f \in \mathbb{R}[[\underline{X}]]$ is expressible uniquely in the form

 $f = f_0 + f_1 + \dots,$

where f_i is a homogenous polynomial of degree i in the variables X_1, \ldots, X_n

Here:

- Addition is defined point wise, and
- multiplication is defined using distributive law:

$$\Big(\sum_{i=0}^{\infty} f_i\Big)\Big(\sum_{i=0}^{\infty} g_i\Big) = (f_0g_0) + (f_0g_1 + f_1g_0) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_1 + f_1g_0) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_1 + f_1g_0) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_1 + f_1g_0) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_1 + f_1g_0) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_j)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_i)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_i)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_i)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_i)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_i)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_i)\Big) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \Big(\sum_{i+j=k} (f_ig_i)\Big) + (f$$

So, both addition and multiplication are well defined and $\mathbb{R}[[\underline{X}]]$ is an integral domain and $\mathbb{R}[\underline{X}] \subseteq \mathbb{R}[[\underline{X}]]$.

Notation 1.4. Fraction field of $\mathbb{R}[[\underline{X}]]$ is denoted by

$$ff(\mathbb{R}[[\underline{X}]]) := \mathbb{R}((\underline{X}))$$

The <u>valuation</u> $v : \mathbb{R}[[\underline{X}]] \to \mathbb{Z} \cup \{\infty\}$ defined by:

$$v(f) = \begin{cases} \text{least } i \text{ s.t. } f_i \neq 0 \text{, if } f \neq 0 \\ \infty \text{, if } f = 0 \end{cases}$$

extends to $\mathbb{R}((\underline{X}))$ via

$$v\left(\frac{f}{g}\right) := v(f) - v(g) \;.$$

Lemma 1.5. Let $f \in \mathbb{R}[[\underline{X}]]$; $f = f_k + f_{k+1} + \ldots$, where f_i homogeneous of degree $i, f_k \neq 0$. Assume that f is a sos in $\mathbb{R}[[\underline{X}]]$.

Then k is even and f_k is a sum of squares of forms of degree $\frac{k}{2}$.

Proof.
$$f = g_1^2 + \ldots + g_l^2$$
, and
 $g_i = g_{ij} + g_{i,j+1} + \ldots$, with $j = \min\{v(g_i) ; i = 1, \ldots, l\}$
Then $f_0 = \ldots = f_{2j-1} = 0$ and $f_{2j} = \sum_{i=1}^k g_{ij}^2 \neq 0$
So, $l = 2j$.

1.6. Units in $\mathbb{R}[[\underline{X}]]$: Let $f = f_0 + f_1 + \dots$, with v(f) = 0 *i.e.* $f_0 \neq 0$. Then f factors as

f = a(1+t); where

 $a \neq 0, t \in \mathbb{R}[[\underline{X}]]$ and $v(t) \geq 1$ with $a := f_0 \in \mathbb{R} \setminus \{0\}; t := \frac{1}{f_0}(f_1 + f_2 + \ldots)$.

Lemma 1.7. $f \in \mathbb{R}[[\underline{X}]]$ is a unit of $\mathbb{R}[[\underline{X}]]$ if and only if $f_0 \neq 0$ (i.e. v(f) = 0).

Proof:
$$\frac{1}{1+t} = 1 - t + t^2 - \dots$$
, for $t \in \mathbb{R}[[X]]$; $v(t) \ge 1$

is a well defined element of $\mathbb{R}[[\underline{X}]]$.

So, if v(f) = 0, then f = a(1+t) with $a \neq 0$ gives

$$f^{-1} = \frac{1}{a} \frac{1}{(1+t)} \in \mathbb{R}[[\underline{X}]].$$

Corollary 1.8. It follows that $\mathbb{R}[[\underline{X}]]$ is a local ring because $I = \{f \mid v(f) \ge 1\}$ is a maximal ideal (quotient is a field \mathbb{R}).

Lemma 1.9. Let $f \in \mathbb{R}[[\underline{X}]]$ a positive unit, i.e. $f_0 > 0$. Then f is a square in $\mathbb{R}[[\underline{X}]]$.

Proof.
$$f = a(1+t); a > 0, v(t) \ge 1$$

 $\sqrt{f} = \sqrt{a}\sqrt{1+t}$,
where $\sqrt{1+t} := (1+t)^{1/2} = 1 + \frac{1}{2}t - \frac{1}{8}t^2 + \dots$ is a well defined element of
 $\mathbb{R}[[\underline{X}]]$

Lemma 1.10. Suppose $n \geq 3$. Then $\exists f \in \mathbb{R}[\underline{X}]$ such that $f \geq 0$ on \mathbb{R}^n and f is not a sum of squares in $\mathbb{R}[[\underline{X}]]$.

Proof. Let $f \in \mathbb{R}[\underline{X}]$ be any homogeneous polynomial which is ≥ 0 on \mathbb{R}^n but is not a sum of squares in $\mathbb{R}[\underline{X}]$ (by Hilbert's Theorem such a polynomial exists).

Now by lemma 1.5 it follows that f is not sos in $\mathbb{R}[[\underline{X}]]$.

Now we prove Proposition 1.2:

Proof of Proposition 1.2. Let $S = \{g_1, \ldots, g_s\}$ • W.l.o.g. assume $g_i \neq 0$, for each $i = 1, \ldots, s$. So $g := \prod_{i=1}^s g_i \neq 0$ $\operatorname{int}(K_S) \neq \emptyset \Rightarrow \exists \underline{p} := (p_1, \ldots, p_n) \in \operatorname{int}(K_S)$ with $\prod_{i=1}^s g_i(\underline{p}) \neq 0$. Thus $g_i(p) > 0 \forall i = i, \ldots, s$. • W.l.o.g. assume $p = \underline{0}$ the origin

(by making a variable change $Y_i := X_i - p_i$, and noting that $\mathbb{R}[Y_1, \dots, Y_n] = \mathbb{R}[X_1, \dots, X_n]$)

So $g_i(0, \ldots, 0) > 0$ for each $i = i, \ldots, s$ (i.e. has positive constant term), that means $g_i \in \mathbb{R}[[\underline{X}]]$ is a positive unit in $\mathbb{R}[[\underline{X}]] \forall i = 1, \ldots, s$.

By Lemma 1.9 (on positive units in power series): $g_i \in \mathbb{R}[[\underline{X}]]^2 \quad \forall i = i, \dots, s.$ So the preordering T_S^A generated by $S = \{g_1, \dots, g_s\}$ in the ring $A := \mathbb{R}[[\underline{X}]]$

is just $\Sigma \mathbb{R}[[X]]^2$.

Now using Lemma 1.10 : $\exists f \in \mathbb{R}[\underline{X}], f \geq 0$ on \mathbb{R}^n but f is not a sum of squares in $\mathbb{R}[[\underline{X}]]$ (i.e. $f \notin \Sigma \mathbb{R}[[\underline{X}]]^2 = T_S^{\mathbb{R}[[\underline{X}]]}$).

So clearly $f \notin T_S$.

Proposition 1.2 that we just proved is just a special case of the following result due to Scheiderer:

Theorem 1.11. Let S be a finite subset of $\mathbb{R}[\underline{X}]$ such that K_S has dimension ≥ 3 .

Then $\exists f \in \mathbb{R}[\underline{X}]; f \geq 0$ on \mathbb{R}^n and $f \notin T_S$.

To understand this result we need:

- (1) a reminder about dimension of semi algebraic sets, and
- (2) more facts about non singular zeros.

2. ALGEBRAIC INDEPENDENCE

Let E/F be a field extension:

Definition 2.1. (1) $a \in E$ is algebraic over F if it is a root of some non zero polynomial $f(x) \in F[x]$, otherwise a is a **transcendental** over F.

(2) $A = \{a_1, \ldots, a_n\} \subseteq E$ is called **algebraically independent** over F if there is no nonzero polynomial $f(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$ s.t. $f(a_1, \ldots, a_n) = 0$.

In general $A \subseteq E$ is algebraically independent over F if every finite subset of A is algebraic independent over F.

(3) A transcendence base of E/F is a maximal subset (w.r.t. inclusion) of E which is algebraically independent over F.

 \Box (Proposition 1.2)