# POSITIVE POLYNOMIALS LECTURE NOTES (10: 18/05/10 - BEARBEITET 30/01/19) 

SALMA KUHLMANN

## Contents

1. Ring of formal power series
2. Algebraic independence

## 1. RING OF FORMAL POWER SERIES

Definition 1.1. (Recall) Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, then
$\mathbf{K}_{\mathbf{S}}:=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0 \forall i=1, \ldots, s\right\}$,
$\mathbf{T}_{\mathbf{S}}:=\left\{\sum_{e_{1}, \ldots, e_{s} \in\{0,1\}} \sigma_{e} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}} \mid \sigma_{e} \in \Sigma \mathbb{R}[\underline{X}]^{2}, e=\left(e_{1}, \ldots, e_{s}\right)\right\}$ is the preordering generated by $S$.

Proposition 1.2. Let $n \geq 3$. Let $S$ be a finite subset of $\mathbb{R}[\underline{X}]$ such that $K_{S} \subseteq \mathbb{R}^{n}$ has non empty interior. Then $\exists f \in \mathbb{R}[\underline{X}]$ such that $f \geq 0$ on $\mathbb{R}^{n}$ and $f \notin T_{S}$.

To prove proposition 1.2 we need to learn a few facts about formal power series rings:

Definition 1.3. $\mathbb{R}[[\underline{X}]]:=\mathbb{R}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ ring of formal power series in $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ with coefficients in $\mathbb{R}$, i.e. , $f \in \mathbb{R}[[\underline{X}]]$ is expressible uniquely in the form

$$
f=f_{0}+f_{1}+\ldots
$$

where $f_{i}$ is a homogenous polynomial of degree $i$ in the variables $X_{1}, \ldots, X_{n}$

Here:

- Addition is defined point wise, and
- multiplication is defined using distributive law:

$$
\left(\sum_{i=0}^{\infty} f_{i}\right)\left(\sum_{i=0}^{\infty} g_{i}\right)=\left(f_{0} g_{0}\right)+\left(f_{0} g_{1}+f_{1} g_{0}\right)+\left(f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}\right)+\ldots=\sum_{k=0}^{\infty}\left(\sum_{i+j=k}\left(f_{i} g_{j}\right)\right)
$$

So, both addition and multiplication are well defined and $\mathbb{R}[[\underline{X}]]$ is an integral domain and $\mathbb{R}[\underline{X}] \subseteq \mathbb{R}[[\underline{X}]]$.

Notation 1.4. Fraction field of $\mathbb{R}[[\underline{X}]]$ is denoted by

$$
f f(\mathbb{R}[[\underline{X}]]):=\mathbb{R}((\underline{X}))
$$

The valuation $v: \mathbb{R}[[\underline{X}]] \rightarrow \mathbb{Z} \cup\{\infty\}$ defined by:

$$
v(f)= \begin{cases}\text { least } i \text { s.t. } f_{i} \neq 0, & \text { if } f \neq 0 \\ \infty & \text {, if } f=0\end{cases}
$$

extends to $\mathbb{R}((\underline{X}))$ via

$$
v\left(\frac{f}{g}\right):=v(f)-v(g) .
$$

Lemma 1.5. Let $f \in \mathbb{R}[[\underline{X}]] ; f=f_{k}+f_{k+1}+\ldots$, where $f_{i}$ homogeneous of degree $i, f_{k} \neq 0$. Assume that $f$ is a sos in $\mathbb{R}[[\underline{X}]]$.
Then $k$ is even and $f_{k}$ is a sum of squares of forms of degree $\frac{k}{2}$.
Proof. $f=g_{1}^{2}+\ldots+g_{l}^{2}$, and

$$
g_{i}=g_{i j}+g_{i, j+1}+\ldots, \text { with } j=\min \left\{v\left(g_{i}\right) ; i=1, \ldots, l\right\}
$$

Then $f_{0}=\ldots=f_{2 j-1}=0$ and $f_{2 j}=\sum_{i=1}^{k} g_{i j}^{2} \neq 0$
So, $l=2 j$.
1.6. Units in $\mathbb{R}[[\underline{X}]]$ : Let $f=f_{0}+f_{1}+\ldots$, with $v(f)=0$ i.e. $f_{0} \neq 0$. Then $f$ factors as

$$
f=a(1+t) ; \text { where }
$$

$a \neq 0, t \in \mathbb{R}[[\underline{X}]]$ and $v(t) \geq 1$ with $a:=f_{0} \in \mathbb{R} \backslash\{0\} ; t:=\frac{1}{f_{0}}\left(f_{1}+f_{2}+\ldots\right)$.

Lemma 1.7. $f \in \mathbb{R}[[\underline{X}]]$ is a unit of $\mathbb{R}[[\underline{X}]]$ if and only if $f_{0} \neq 0$ (i.e. $v(f)=0)$.

Proof: $\frac{1}{1+t}=1-t+t^{2}-\ldots$, for $t \in \mathbb{R}[[\underline{X}]] ; v(t) \geq 1$
is a well defined element of $\mathbb{R}[[\underline{X}]]$.
So, if $v(f)=0$, then $f=a(1+t)$ with $a \neq 0$ gives

$$
f^{-1}=\frac{1}{a} \frac{1}{(1+t)} \in \mathbb{R}[[\underline{X}]] .
$$

Corollary 1.8. It follows that $\mathbb{R}[[\underline{X}]]$ is a local ring because $I=\{f \mid v(f) \geq$ $1\}$ is a maximal ideal (quotient is a field $\mathbb{R}$ ).

Lemma 1.9. Let $f \in \mathbb{R}[[\underline{X}]]$ a positive unit, i.e. $f_{0}>0$. Then $f$ is a square in $\mathbb{R}[[\underline{X}]]$.

Proof. $f=a(1+t) ; a>0, v(t) \geq 1$

$$
\sqrt{f}=\sqrt{a} \sqrt{1+t}
$$

where $\sqrt{1+t}:=(1+t)^{1 / 2}=1+\frac{1}{2} t-\frac{1}{8} t^{2}+\ldots$ is a well defined element of $\mathbb{R}[[\underline{X}]]$

Lemma 1.10. Suppose $n \geq 3$. Then $\exists f \in \mathbb{R}[\underline{X}]$ such that $f \geq 0$ on $\mathbb{R}^{n}$ and $f$ is not a sum of squares in $\mathbb{R}[[\underline{X}]]$.

Proof. Let $f \in \mathbb{R}[\underline{X}]$ be any homogeneous polynomial which is $\geq 0$ on $\mathbb{R}^{n}$ but is not a sum of squares in $\mathbb{R}[\underline{X}]$ (by Hilbert's Theorem such a polynomial exists).
Now by lemma 1.5 it follows that $f$ is not sos in $\mathbb{R}[[\underline{X}]]$.
Now we prove Proposition 1.2:
Proof of Proposition 1.2. Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$

- W.l.o.g. assume $g_{i} \not \equiv 0$, for each $i=1, \ldots, s$. So $g:=\prod_{i=1}^{s} g_{i} \not \equiv 0$
$\operatorname{int}\left(K_{S}\right) \neq \emptyset \Rightarrow \exists \underline{p}:=\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{int}\left(K_{S}\right)$ with $\prod_{i=1}^{s} g_{i}(\underline{p}) \neq 0$.
Thus $g_{i}(\underline{p})>0 \forall i=i, \ldots, s$
- W.l.o.g. assume $p=\underline{0}$ the origin
(by making a variable change $Y_{i}:=X_{i}-p_{i}$, and noting that

$$
\left.\mathbb{R}\left[Y_{1}, \ldots, Y_{n}\right]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right)
$$

So $g_{i}(0, \ldots, 0)>0$ for each $i=i, \ldots, s$ (i.e. has positive constant term), that means $g_{i} \in \mathbb{R}[[\underline{X}]]$ is a positive unit in $\mathbb{R}[[\underline{X}]] \forall i=1, \ldots, s$.
By Lemma 1.9 (on positive units in power series): $g_{i} \in \mathbb{R}[[\underline{X}]]^{2} \forall i=i, \ldots, s$.
So the preordering $T_{S}{ }^{A}$ generated by $S=\left\{g_{1}, \ldots, g_{s}\right\}$ in the $\operatorname{ring} A:=\mathbb{R}[[\underline{X}]]$ is just $\Sigma \mathbb{R}[[\underline{X}]]^{2}$.
Now using Lemma 1.10: $\exists f \in \mathbb{R}[\underline{X}], f \geq 0$ on $\mathbb{R}^{n}$ but $f$ is not a sum of squares in $\mathbb{R}[[\underline{X}]]$ (i.e. $f \notin \Sigma \mathbb{R}[[\underline{X}]]^{2}=T_{S}{ }^{\mathbb{R}[[\underline{X}]]}$ ).
So clearly $f \notin T_{S}$.
$\square$ (Proposition 1.2)
Proposition 1.2 that we just proved is just a special case of the following result due to Scheiderer:

Theorem 1.11. Let $S$ be a finite subset of $\mathbb{R}[\underline{X}]$ such that $K_{S}$ has dimension $\geq 3$.
Then $\exists f \in \mathbb{R}[\underline{X}] ; f \geq 0$ on $\mathbb{R}^{n}$ and $f \notin T_{S}$.
To understand this result we need:
(1) a reminder about dimension of semi algebraic sets, and
(2) more facts about non singular zeros.

## 2. ALGEBRAIC INDEPENDENCE

Let $E / F$ be a field extension:
Definition 2.1. (1) $a \in E$ is algebraic over $F$ if it is a root of some non zero polynomial $f(x) \in F[x]$, otherwise $a$ is a transcendental over $F$.
(2) $A=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq E$ is called algebraically independent over $F$ if there is no nonzero polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$ s.t. $f\left(a_{1}, \ldots, a_{n}\right)=$ 0.

In general $A \subseteq E$ is algebraically independent over $F$ if every finite subset of $A$ is algebraic independent over $F$.
(3) A transcendence base of $E / F$ is a maximal subset (w.r.t. inclusion) of $E$ which is algebraically independent over $F$.

