POSITIVE POLYNOMIALS LECTURE NOTES (14: 01/06/10 - BEARBEITET 07/02/19)

SALMA KUHLMANN

Contents

1. Rings of bounded elements	1
2. Schmüdgen's Positivstellensatz	2

1. RINGS OF BOUNDED ELEMENTS

Let A be a commutative ring with 1, $\mathbb{Q} \subseteq A$ and M be a quadratic module $\subseteq A$.

Definition 1.1. Consider

 $B_M = \{ a \in A \mid \exists n \in \mathbb{N} \text{ s.t. } n + a \text{ and } n - a \in M \},\$

 B_M is called the **ring of bounded elements**, which are bounded by M.

Proposition 1.2.

- (1) M is an archimedean module of A iff $B_M = A$.
- (2) B_M is a subring of A.
- (3) $\forall a \in A, a^2 \in B_M \Rightarrow a \in B_M.$

(4) More generally, $\forall a_1, \dots, a_k \in A$, $\sum_{i=1}^k a_i^2 \in B_M \Rightarrow a_i \in B_M \ \forall i = 1, \dots, k$.

Proof. (1) Clear.

(2) Clearly $\mathbb{Q} \subseteq B_M$ and B_M is an additive subgroup of A. <u>To show</u>: $a, b \in B_M \Rightarrow ab \in B_M$ Using the identity So, $a \in B_M$.

(14: 01/06/10)

 $ab = \frac{1}{4} [(a+b)^2 - (a-b)^2],$ we see that in order to show that B_M is closed under multiplication it is sufficient to show that: $\forall a \in A : a \in B_M \Rightarrow a^2 \in B_M.$

Let
$$a \in B_M$$
. Then $n \pm a \in M$ for some $n \in \mathbb{N}$. Now $n^2 + a^2 \in M$.
Also $2n(n^2 - a^2) = (n^2 - a^2)[(n + a) + (n - a)].$

So,
$$(n^2 - a^2) = \frac{1}{2n} \Big[(n+a)(n^2 - a^2) + (n-a)(n^2 - a^2) \Big]$$

$$= \frac{1}{2n} \Big[(n+a)^2(n-a) + (n-a)^2(n+a) \Big] \in M.$$

So $(n^2 + a^2)$ and $(n^2 - a^2)$ both $\in M$. So by definition $a^2 \in B_M$. \Box (2) (3) Assume $a^2 \in B_M$. Say $n - a^2 \in M$, for $n \ge 1, n \in \mathbb{N}$, then use the identity:

$$(n \pm a) = \frac{1}{2} \left[(n-1) + (n-a^2) + (a \pm 1)^2 \right] \in M.$$

(4) If
$$\sum a_i^2 \in B_M$$
. Say $\left(n - \sum a_i^2\right) \in M$, then
 $\left(n - a_i^2\right) = \left(n - \sum a_j^2\right) + \sum_{j \neq i} a_j^2 \in M.$
So, $a_i^2 \in B_M$ and so by (3), $a_i \in B_M.$

Corollary 1.3. Let M be a quadratic module of $\mathbb{R}[\underline{X}]$. Then M is archimedean iff there exists $N \in \mathbb{N}$ such that

$$N - \sum_{i=1}^{n} X_i^2 \in M$$

Proof. (⇒) Clear. (⇐) First note that $\mathbb{R}_+ \subseteq M$ so, $\mathbb{R} \subseteq B_M$ (B_M subring). Also $N - \sum_{i=1}^n X_i^2$ and $N + \sum_{i=1}^n X_i^2 \in M$. Therefore by definition $\sum_{i=1}^n X_i^2 \in B_M$. So (by Proposition 1.2) $X_1, \ldots, X_n \in B_M$. This implies $\mathbb{R}[X_1, \ldots, X_n] \subseteq B_M$ and so M is archimedean.

2. SCHMÜDGEN'S POSITIVSTELLENSATZ

Theorem 2.1. Let $S = \{g_1, \ldots, g_s\} \subseteq \mathbb{R}[\underline{X}]$. Assume that $K = K_S = \{\underline{x} \mid g_i(\underline{x}) \geq 0\}$ is compact. Then there exists $N \in \mathbb{N}$ such that

$$N - \sum_{i=1}^{n} X_i^2 \in T_S = T.$$

In particular T_S is an archimedean preordering (by Corollary 1.3) and thus $\forall f \in \mathbb{R}[\underline{X}]: f > 0$ on $K_S \Rightarrow f \in T_S$.

Proof. [Reference: Dissertation, Thorsten Wörmann]

- $K \text{ compact} \Rightarrow K \text{ bounded} \Rightarrow \exists k \in \mathbb{N} \text{ such that } \left(k \sum_{i=1}^{n} X_i^2\right) > 0 \text{ on } K.$
- By applying the Positivstellensatz to above we get: $\exists p, q \in T_S$ such that $p\left(k \sum_{i=1}^n X_i^2\right) = 1 + q$. So, $p\left(k \sum_{i=1}^n X_i^2\right)^2 = (1+q)\left(k \sum_{i=1}^n X_i^2\right)$. So, $(1+q)\left(k - \sum_{i=1}^n X_i^2\right) \in T_S$.
- Set $T' = T + \left(k \sum_{i=1}^{n} X_i^2\right) T$. By Corollary 1.3, T' is an archimedean preordering. Therefore $\exists m \in \mathbb{N}$ such that $(m-q) \in T'$; say: $m-q = t_1 + t_2 \left(k \sum_{i=1}^{n} X_i^2\right)$ for some $t_1, t_2 \in T$.

• So, $(m-q)(1+q) = t_1(1+q) + t_2\left(k - \sum_{i=1}^n X_i^2\right)(1+q) \in T_S$. So $(m-q)(1+q) \in T_S$.

• Adding

$$(m-q)(1+q) = mq - q^2 + m - q \in T_S,$$
(1)

$$\left(\frac{m}{2} - q\right)^2 = \frac{m^2}{4} + q^2 - mq \in T_S.$$
 (2)

yields

$$\left(m + \frac{m^2}{4} - q\right) \in T_S. \tag{3}$$

• Multiplying L.H.S. of (3) by $k \in T_S$, and adding $\left(k - \sum_{i=1}^n X_i^2\right)(1+q) \in T_S$ and $q\left(\sum_{i=1}^n X_i^2\right) \in T_S$, yields

$$k\left(m + \frac{m^{2}}{4} - q\right) + \left(k - \sum_{i=1}^{n} X_{i}^{2}\right)(1+q) + q\left(\sum_{i=1}^{n} X_{i}^{2}\right) \in T_{S}$$

i.e. $km + k\frac{m^{2}}{4} + k - \sum_{i=1}^{n} X_{i}^{2} \in T_{S}$
i.e. $k\left(\frac{m}{2} + 1\right)^{2} - \sum_{i=1}^{n} X_{i}^{2} \in T_{S}$
Set $N := k\left(\frac{m}{2} + 1\right)^{2}$.

(End of Schmüdgen's Positivstellensatz)

2.2. Final Remarks on Schmüdgen's Positivstellensatz (SPSS):

- 1. Corollary (Schmüdgen's Nichtnegativstellensatz): $f \ge 0$ on $K_S \Rightarrow \forall \epsilon \text{ real}, \epsilon > 0 : f + \epsilon \in T_S.$
- SPSS fails in general if we drop the assumption that "K is compact".
 For example:

(i) Consider n = 1, $S = \{X^3\}$, then $K_S = [0, \infty)$ (noncompact). Take f = X + 1. Then f > 0 on K_S . <u>Claim</u>: $f \notin T_S$, indeed elements of T_S have the form $t_0 + t_1 X^3$, where $t_0, t_1 \in \sum \mathbb{R}[X]^2$. We have shown before at the beginning of this course (in 2.4 of lecture 2) that non zero elements of this preordering either have even degree or odd degree ≥ 3 .

(ii) Consider $n \ge 2, S = \emptyset$, then $K_S = \mathbb{R}^n$. Take strictly positive versions of the Motzkin polynomial

$$m(X_1, X_2) := 1 - X_1^2 X_2^2 + X_1^2 X_2^4 + X_1^4 X_2^2,$$

i.e. $m_{\epsilon} := m(X_1, X_2) + \epsilon$; $\epsilon \in \mathbb{R}_+$. Then $m_{\epsilon} > 0$ on $K_S = \mathbb{R}^2$, and it is easy to show that $m_{\epsilon} \notin T_S = \sum \mathbb{R}[\underline{X}]^2 \ \forall \epsilon \in \mathbb{R}_+$.

- 3. SPSS fails in general for a quadratic module instead of a preordering. [Mihai Putinar's question answered by Jacobi + Prestel in Dissertation of T. Jacobi (Konstanz)]
- 4. SPSS fails in general if the condition "f > 0 on K_S " is replaced by " $f \ge 0$ on K_S ".

Example (Stengle): Consider $n = 1, S = \{(1 - X^2)^3\}, K_S = [-1, 1]$ compact. Take $f := 1 - X^2 \ge 0$ on K_S but $1 - X^2 \notin T_S$. (This example

has already been considered at the beginning of this course in 2.4 of lecture 2).

5. PSS holds for any real closed field but not SPSS:

Example: Let R be a non archimedean real closed field. Take $n = 1, S = \{(1 - X^2)^3\}$, then $K_S = [-1, 1]_R = \{x \in R \mid -1 \leq x \leq 1\}$. Take $f = 1 + t - X^2$, where $t \in R^{>0}$ is an infinitesimal element (i.e. $0 < t < \epsilon$, for every positive rational ϵ). Then f > 0 on K_S . We claim that $f \notin T_S$:

Let v be the natural valuation on R. So v(t) > 0. Now suppose for a contradiction that $f \in T_S$. Then

$$1 + t - X^2 = f = t_0 + t_1(1 - X^2)^3; t_0, t_1 \in \sum R[X]^2$$
 (1)
; for $i = 0, 1$ and $f_{ij} \in R[X]$.

Let $s \in R$ be the coefficient of the lowest value appearing in the f_{ij} , i.e. $v(s) = \min\{v(a) \mid a \text{ is coefficient of some } f_{ij}\}.$

<u>Case I.</u> if $v(s) \ge 0$, then applying the residue map $\left(\theta_v \longrightarrow \overline{R} := \frac{\theta_v}{\mathcal{I}_v}; \right)$ defined by $x \longmapsto \overline{x}$, where θ_v is the valuation ring to (1), we obtain

$$1 - X^2 = \overline{t_0} + \overline{t_1}(1 - X^2)^3$$

and since $\overline{t_i} = \sum \overline{f_{ij}}^2 \in \sum \mathbb{R}[X]^2$; i = 0, 1; we get a contradiction to Example 2.4 (ii) of Lecture 2.

<u>Case II.</u> if v(s) < 0. Dividing f by s^2 and applying the residue map we obtain

$$0 = \overline{\frac{t_0}{s^2}} + \overline{\frac{t_1}{s^2}}(1 - X^2)^3$$

(Note that $v(s^2) = 2v(s)$ is $\min\{v(a)\}$; *a* is coefficient of some f_{ij}^2 , i.e. $v(s^2) \leq v(a)$ for any coefficient *a*, so $\frac{f_{ij}^2}{s^2}$ has coefficients with value ≥ 0 .)

So we obtain

Let $t_i = \sum f_{ij}^2$

1

 $0 = t'_0 + t'_1(1 - X^2)^3$, with $t'_0, t'_1 \in \sum \mathbb{R}[X]^2$ not both zero. Since t'_0, t'_1 have only finitely many common roots in \mathbb{R} and $1 - X^2 > 0$ on the finite set (-1, 1), this is impossible. \Box (claim)

6. SPSS holds over archimedean real closed fields.