POSITIVE POLYNOMIALS LECTURE NOTES (14: 01/06/10 - BEARBEITET 07/02/19)

SALMA KUHLMANN

Contents

1. Rings of bounded elements
2. Schmüdgen's Positivstellensatz

1. RINGS OF BOUNDED ELEMENTS

Let A be a commutative ring with $1, \mathbb{Q} \subseteq A$ and M be a quadratic module $\subseteq A$.

Definition 1.1. Consider

$$
B_{M}=\{a \in A \mid \exists n \in \mathbb{N} \text { s.t. } n+a \text { and } n-a \in M\},
$$

B_{M} is called the ring of bounded elements, which are bounded by M.

Proposition 1.2.

(1) M is an archimedean module of A iff $B_{M}=A$.
(2) B_{M} is a subring of A.
(3) $\forall a \in A, a^{2} \in B_{M} \Rightarrow a \in B_{M}$.
(4) More generally, $\forall a_{1}, \ldots, a_{k} \in A, \sum_{i=1}^{k} a_{i}^{2} \in B_{M} \Rightarrow a_{i} \in B_{M} \forall i=1, \ldots, k$.

Proof. (1) Clear.
(2) Clearly $\mathbb{Q} \subseteq B_{M}$ and B_{M} is an additive subgroup of A.

To show: $a, b \in B_{M} \Rightarrow a b \in B_{M}$
Using the identity

$$
a b=\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right],
$$

we see that in order to show that B_{M} is closed under multiplication it is sufficient to show that: $\forall a \in A: a \in B_{M} \Rightarrow a^{2} \in B_{M}$.
Let $a \in B_{M}$. Then $n \pm a \in M$ for some $n \in \mathbb{N}$. Now $n^{2}+a^{2} \in M$.
Also $2 n\left(n^{2}-a^{2}\right)=\left(n^{2}-a^{2}\right)[(n+a)+(n-a)]$.
So, $\left(n^{2}-a^{2}\right)=\frac{1}{2 n}\left[(n+a)\left(n^{2}-a^{2}\right)+(n-a)\left(n^{2}-a^{2}\right)\right]$

$$
\begin{equation*}
=\frac{1}{2 n}\left[(n+a)^{2}(n-a)+(n-a)^{2}(n+a)\right] \in M . \tag{2}
\end{equation*}
$$

So $\left(n^{2}+a^{2}\right)$ and $\left(n^{2}-a^{2}\right)$ both $\in M$. So by definition $a^{2} \in B_{M}$.
(3) Assume $a^{2} \in B_{M}$. Say $n-a^{2} \in M$, for $n \geq 1, n \in \mathbb{N}$, then use the identity:

$$
\begin{equation*}
(n \pm a)=\frac{1}{2}\left[(n-1)+\left(n-a^{2}\right)+(a \pm 1)^{2}\right] \in M \tag{3}
\end{equation*}
$$

So, $a \in B_{M}$.
(4) If $\sum a_{i}^{2} \in B_{M}$. Say $\left(n-\sum a_{i}^{2}\right) \in M$, then

$$
\begin{equation*}
\left(n-a_{i}^{2}\right)=\left(n-\sum a_{j}^{2}\right)+\sum_{j \neq i} a_{j}^{2} \in M \tag{4}
\end{equation*}
$$

So, $a_{i}^{2} \in B_{M}$ and so by (3), $a_{i} \in B_{M}$.

Corollary 1.3. Let M be a quadratic module of $\mathbb{R}[\underline{X}]$. Then M is archimedean iff there exists $N \in \mathbb{N}$ such that

$$
N-\sum_{i=1}^{n} X_{i}^{2} \in M
$$

Proof. (\Rightarrow) Clear.
(\Leftarrow) First note that $\mathbb{R}_{+} \subseteq M$ so, $\mathbb{R} \subseteq B_{M}$ (B_{M} subring).
Also $N-\sum_{i=1}^{n} X_{i}^{2}$ and $N+\sum_{i=1}^{n} X_{i}^{2} \in M$. Therefore by definition $\sum_{i=1}^{n} X_{i}^{2} \in B_{M}$.
So (by Proposition 1.2) $X_{1}, \ldots, X_{n} \in B_{M}$. This implies $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] \subseteq B_{M}$ and so M is archimedean.

2. SCHMÜDGEN'S POSITIVSTELLENSATZ

Theorem 2.1. Let $S=\left\{g_{1}, \ldots g_{s}\right\} \subseteq \mathbb{R}[\underline{X}]$. Assume that $K=K_{S}=$ $\left\{\underline{x} \mid g_{i}(\underline{x}) \geq 0\right\}$ is compact. Then there exists $N \in \mathbb{N}$ such that

$$
N-\sum_{i=1}^{n} X_{i}^{2} \in T_{S}=T
$$

In particular T_{S} is an archimedean preordering (by Corollary 1.3) and thus $\forall f \in \mathbb{R}[\underline{X}]: f>0$ on $K_{S} \Rightarrow f \in T_{S}$.

Proof. [Reference: Dissertation, Thorsten Wörmann]

- K compact $\Rightarrow K$ bounded $\Rightarrow \exists k \in \mathbb{N}$ such that $\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)>0$ on K.
- By applying the Positivstellensatz to above we get: $\exists p, q \in T_{S}$ such that $p\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)=1+q$. So, $p\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)^{2}=(1+q)\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)$.
So, $(1+q)\left(k-\sum_{i=1}^{n} X_{i}^{2}\right) \in T_{S}$.
- Set $T^{\prime}=T+\left(k-\sum_{i=1}^{n} X_{i}^{2}\right) T$. By Corollary 1.3, T^{\prime} is an archimedean preordering. Therefore $\exists m \in \mathbb{N}$ such that $(m-q) \in T^{\prime}$; say: $m-q=$ $t_{1}+t_{2}\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)$ for some $t_{1}, t_{2} \in T$.
- So, $(m-q)(1+q)=t_{1}(1+q)+t_{2}\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)(1+q) \in T_{S}$. So $(m-q)(1+q) \in T_{S}$.
- Adding

$$
\begin{align*}
(m-q)(1+q) & =m q-q^{2}+m-q \in T_{S}, \tag{1}\\
\left(\frac{m}{2}-q\right)^{2} & =\frac{m^{2}}{4}+q^{2}-m q \in T_{S} . \tag{2}
\end{align*}
$$

yields

$$
\begin{equation*}
\left(m+\frac{m^{2}}{4}-q\right) \in T_{S} \tag{3}
\end{equation*}
$$

- Multiplying L.H.S. of (3) by $k \in T_{S}$, and adding $\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)(1+q) \in$ T_{S} and $q\left(\sum_{i=1}^{n} X_{i}^{2}\right) \in T_{S}$, yields
$k\left(m+\frac{m^{2}}{4}-q\right)+\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)(1+q)+q\left(\sum_{i=1}^{n} X_{i}^{2}\right) \in T_{S}$
i.e. $k m+k \frac{m^{2}}{4}+k-\sum_{i=1}^{n} X_{i}^{2} \in T_{S}$
i.e. $k\left(\frac{m}{2}+1\right)^{2}-\sum_{i=1}^{n} X_{i}^{2} \in T_{S}$

Set $N:=k\left(\frac{m}{2}+1\right)^{2}$.
(End of Schmüdgen's Positivstellensatz)

2.2. Final Remarks on Schmüdgen's Positivstellensatz (SPSS):

1. Corollary (Schmüdgen's Nichtnegativstellensatz):

$f \geq 0$ on $K_{S} \Rightarrow \forall \epsilon$ real, $\epsilon>0: f+\epsilon \in T_{S}$.
2. SPSS fails in general if we drop the assumption that " K is compact".

For example:
(i) Consider $n=1, S=\left\{X^{3}\right\}$, then $K_{S}=[0, \infty)$ (noncompact). Take $f=X+1$. Then $f>0$ on K_{S}. Claim: $f \notin T_{S}$, indeed elements of T_{S} have the form $t_{0}+t_{1} X^{3}$, where $t_{0}, t_{1} \in \sum \mathbb{R}[X]^{2}$. We have shown before at the beginning of this course (in 2.4 of lecture 2) that non zero elements of this preordering either have even degree or odd degree ≥ 3.
(ii) Consider $n \geq 2, S=\emptyset$, then $K_{S}=\mathbb{R}^{n}$. Take strictly positive versions of the Motzkin polynomial

$$
m\left(X_{1}, X_{2}\right):=1-X_{1}^{2} X_{2}^{2}+X_{1}^{2} X_{2}^{4}+X_{1}^{4} X_{2}^{2},
$$

i.e. $m_{\epsilon}:=m\left(X_{1}, X_{2}\right)+\epsilon ; \epsilon \in \mathbb{R}_{+}$. Then $m_{\epsilon}>0$ on $K_{S}=\mathbb{R}^{2}$, and it is easy to show that $m_{\epsilon} \notin T_{S}=\sum \mathbb{R}[\underline{X}]^{2} \forall \epsilon \in \mathbb{R}_{+}$.
3. SPSS fails in general for a quadratic module instead of a preordering. [Mihai Putinar's question answered by Jacobi + Prestel in Dissertation of T. Jacobi (Konstanz)]
4. SPSS fails in general if the condition " $f>0$ on K_{S} " is replaced by " $f \geq 0$ on K_{S} ".

Example (Stengle): Consider $n=1, S=\left\{\left(1-X^{2}\right)^{3}\right\}, K_{S}=[-1,1]$ compact. Take $f:=1-X^{2} \geq 0$ on K_{S} but $1-X^{2} \notin T_{S}$. (This example
has already been considered at the beginning of this course in 2.4 of lecture 2).
5. PSS holds for any real closed field but not SPSS:

Example: Let R be a non archimedean real closed field. Take $n=$ $1, S=\left\{\left(1-X^{2}\right)^{3}\right\}$, then $K_{S}=[-1,1]_{R}=\{x \in R \mid-1 \leq x \leq 1\}$. Take $f=1+t-X^{2}$, where $t \in R^{>0}$ is an infinitesimal element (i.e. $0<t<\epsilon$, for every positive rational ϵ). Then $f>0$ on K_{S}. We claim that $f \notin T_{S}$:
Let v be the natural valuation on R. So $v(t)>0$. Now suppose for a contradiction that $f \in T_{S}$. Then

$$
\begin{equation*}
1+t-X^{2}=f=t_{0}+t_{1}\left(1-X^{2}\right)^{3} ; t_{0}, t_{1} \in \sum R[X]^{2} \tag{1}
\end{equation*}
$$

Let $t_{i}=\sum f_{i j}^{2} ;$ for $i=0,1$ and $f_{i j} \in R[X]$.
Let $s \in R$ be the coefficient of the lowest value appearing in the $f_{i j}$, i.e. $v(s)=\min \left\{v(a) \mid a\right.$ is coefficient of some $\left.f_{i j}\right\}$.

Case I. if $v(s) \geq 0$, then applying the residue $\operatorname{map}\left(\theta_{v} \longrightarrow \bar{R}:=\frac{\overline{\theta_{v}}}{\overline{\mathcal{I}_{v}}}\right.$; defined by $x \longmapsto \bar{x}$, where θ_{v} is the valuation ring) to (1), we obtain

$$
1-X^{2}=\overline{t_{0}}+\overline{t_{1}}\left(1-X^{2}\right)^{3}
$$

and since $\overline{t_{i}}=\sum{\overline{f_{i j}}}^{2} \in \sum \mathbb{R}[X]^{2} ; i=0,1$; we get a contradiction to Example 2.4 (ii) of Lecture 2.
Case II. if $v(s)<0$. Dividing f by s^{2} and applying the residue map we obtain

$$
0=\frac{\overline{t_{0}}}{s^{2}}+\frac{\overline{t_{1}}}{s^{2}}\left(1-X^{2}\right)^{3}
$$

(Note that $v\left(s^{2}\right)=2 v(s)$ is $\min \{v(a)\} ; a$ is coefficient of some $f_{i j}^{2}$, i.e. $v\left(s^{2}\right) \leq v(a)$ for any coefficient a, so $\frac{f_{i j}^{2}}{s^{2}}$ has coefficients with value ≥ 0.)
So we obtain

$$
0=t_{0}^{\prime}+t_{1}^{\prime}\left(1-X^{2}\right)^{3} \text {, with } t_{0}^{\prime}, t_{1}^{\prime} \in \sum \mathbb{R}[X]^{2} \text { not both zero. }
$$

Since $t_{0}^{\prime}, t_{1}^{\prime}$ have only finitely many common roots in \mathbb{R} and $1-X^{2}>0$ on the finite set $(-1,1)$, this is impossible.
6. SPSS holds over archimedean real closed fields.

