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1. APPLICATION OF SPSS TO THE MOMENT PROBLEM (continued)

Lemma 1.1. (Lemma 2.11 of last lecture) Let L : R[X] — R be a linear functional
and denote by
7:(Z,)" >R
the corresponding multisequence (i.e. (k) := L(X*) V k € (Z,)").
Fix g € R[X], gX) = Z ap X € R[X]. Then L(h*g) > O for all h € R[X] if
k c Z+)l
and only if the multisequence g(E), is psd.
Proof. Compute:

LX) = Y autk+D) = g(B)(D; forall L€ (Z,)"
ke Z+n
Thus if h = Z eXh € RIX] then h? = ) i, XHb,
bj

2. So, L(h’g) = (chjxm = 3 e LX)
ij

Nl ,Zg(E)‘r(l_(i'i_l_cj)ciCj- o

[by 1] iJ
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Theorem 1.2. (Schmiidgen’s NNSS) (Reformulation in terms of moment se-
quences) Let K = Kg compact, S = {g1,...,8s} and 7 : (Z")" — R be a given
multisequence. Then 7 is a K-moment sequence if and only if the multisequences
(g} ... & )E) : (Z*)" — R are all psd for all (e, ..., e,) € {0, 1}°. |

Next we reformulate question (1) in 2.4 of Lecture 15 in terms of Hankel
matrices:

2. SCHMUDGEN’S NNSS AND HANKEL MATRICES

We want to understand L(hzg) > 0; h, g € R[X] in terms of Hankel matrices.

Definition 2.1. A real symmetric n X n matrix A is psd if x’ Ax >0V x € R".
An N x N symmetric matrix (say) A is psd if x’Ax > 0¥ x e R"and ¥ n € N.

Definition 2.2. Let L # 0;L : R[X] — R be a given linear functional. Fix
g € R[X]. Consider symmetric bilinear form:
(, )¢ ' RIXIXR[X] > R
(h,k)g := L(hkg) ; h,k € R[X]

Denote by S, the N x N symmetric matrix with af-entry (X=, Xﬁ)g VapeN,
i.e. the ap-entry of S, is L(X** ).
Example. Let g = 1, then

(X% XE)) = LX) = squp.
More generally, if g = 3 a, X* then

(X, )_(é>g = L( Z ay Xg+§+z) = Z Ay Sa+p+y -

Y Y

Proposition 2.3. Let L, g be fixed as above. Then the following are equivalent:

1. L(ocg) >0V o € 3 R[X].

2. L(h’g) >0V h e RIX].

3. (, )gis psd.

4. S, is psd.

Proof. (1) & (2) is clear.
Since (h, h), = L(h*g), (2) © (3)is clear.
(3) © (4) is also clear. O
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2.4. Example. (Hamburger) Let n = 1. A linear functional L : R[X] — R comes
from a Borel measure on R if and only if L(c") > 0 for every o € 3 R[X]*.

Proof. From Haviland we know L comes from a Borel measure iff L(f) > O for
every f(X) € R[X],f > 0 on R. But Psd(R) = Y R[X]? (by exercise in Real
Algebraic Geometry course in WS 2009-10). So the condition is clear. O

Remark 2.5. We can express Hamburgers’s Theorem via Hankel matrix S, with
g = 1 the constant polynomial.
n=1,so (for i, j € N) the ij ™ coefficient of Sy is s;1; = L(X"™).

So St 82

S1 Sy ... .
Hence, S| = ) is psd.

Sy ... .

2.1. REFORMULATION OF SCHMUDGEN’S SOLUTION TO THE MOMENT
PROBLEM IN TERMS OF HANKEL MATRICES

2.6. LetS ={gy,...,8 € R[X]and Kg € R" is compact. A linear functional L
on R[X] is represented by a Borel measure on K iff the 2° N x N Hankel matrices
(Sgr gl .. e) €{0, 1)) are psd, where S, := [L(X*Eg)lap s @, € N".

3. FINITE SOLVABILITY OF THE K- MOMENT PROBLEM

Definition 3.1. Let K be a basic closed semi-algebraic subset of R".

1. The K-moment problem (KMP) is finitely solvable if there exists S finite,
S € R[X] such that:
(1) K = K, and
(i1) V linear functional L on R[X] we have: L(Ts) > 0 = L(Psd(K)) >0
(equivalently, (iii) L(Ts) > 0 = 3 p: L = [ du).

2. We shall say S solves the KMP if (i) and (ii) (equivalently (i) and (iii))
hold.

3.2. Schmiidgen’s solution to the KPM for K compact b.c.s.a. Let K C R" be
a compact basic closed semi-algebraic set. Then S solves the KMP for any finite
description S of K (i.e. for all finite § € R[X] with K = K).
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One can restate the condition “S solves the K-Moment problem” via the equal-
ity of two preorderings. We shall adopt this approach throughout:

Definition 3.3. Let 75 C R[X] be a preordering. Define the dual cone of T's:
Tg :={L|L:R[X] — Ris alinear functional; L(Ts) > 0},
and the double dual cone:

T = {f|feRIXI;L(f) >0V Le Ty}

Lemma 3.4. For § C R[X], S finite:
(@) Ts CTgY
(b) T§" C Psd (Ky).

Proof. (a) Immediate by definition.

(b) Let f € T". To show: f(x) >0V x € K.

Now every x € R" determines an R-algebra homomorphism
ey, := Ly € Hom(R[X], R); L(g) = e),(8) := g(x) ¥ g € R[X],

this L, is in particular a linear functional.

Moreover we claim that L,(Ts) > O for x € Kg. Indeed if g € T then
L.(g) = g(x) > 0 for x € K.

So, by assumption on f we must also have L,(f) > 0 for x € Kj, i.e.
f(x) > 0forall x € Ky as required.
O

We summarize as follows:
Corollary 3.5. For finite S € R[X]:
Ts C Tg' C Psd(Ks).

Corollary 3.6. (Reformulation of finite solvability) Let K C R" be a b.c.s.a. set
and S € R[X] be finite. Then S solves the KMP iff

() K = Ks, and

(i) TY = Psd(K).
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Proof. Assume (i) of definition 3.1,1i.e. V L : L(Ts) > 0 = L(Psd(K)) > 0, and
show (jj) i.e. T = Psd(K):

Let f € Psd(K). Show f € T¢" i.e. show L(f) >0V L e Tg.

Assume L(Ts) > 0. Then by assumption L(Psd(K)) > 0. So, L(f) > 0 as required.

Conversely, assume (jj) and show (ii):
Let L(Ts) 2 0,1.e. L € T§. Show L(Psd(K)) > 0, i.e show L(f) > 0V f € Psd(K).
Now [by assumption (jj)] f € Psd(K) = f e T = L(f) >0V L e Tg. O

We shall come back later to 75" and describe it as closure w.r.t. an appropriate
topology.

4. HAVILAND’S THEOREM

For the proof of Haviland’s theorem (2.5 of lecture 15), we will recall Riesz Rep-
resentation Theorem.

Definition 4.1. A topological space is said to be Hausdorff (or seperated) if it
satisfies

(H4): any two distinct points have disjoint neighbourhoods, or

(T,): two distinct points always lie in disjoint open sets.

Definition 4.2. A topological space y is said to be locally compact if V x € y 1
an open neighbourhood U > x such that U is compact.

Theorem 4.3. (Riesz Representation Theorem) Let y be a locally compact
Hausdorff space and L : Cont.(y,R) — R be a positive linear functional i.e.
L(f) >0V f > 0on y. Then there exists a unique (positive regular) Borel mea-

sure u on y such that L(f) = ffd,u vV f € Cont.(y,R), where Cont.(y,R) :=
X

the ring (R-algebra) of all continuous functions f : y — R (addition and multipli-
cation defined pointwise) with compact support i.e. such that the set supp(f) :=
{x € xy : f(x) # 0} is compact.

Definition 4.4. L positive means:

L(f) >0V f € Contc(y,R) with f > 0 on y.



