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Abstract

There are a wide variety of mathematical problems in different areas which are classified

under the title of Moment Problem. We are interested in the moment problem with

polynomial data and its relation to real algebra and real algebraic geometry. In this

direction, we consider two different variants of moment problem.

The first variant is the global polynomial optimization problem, i.e., finding the mini-

mum of a polynomial f ∈ R[X] = R[X1, . . . ,Xn] on Rn. It is known that this problem is

NP-hard. One of the most successful approaches to this problem is semidefinite program-

ming (SDP) [35, 47], which gives a polynomial time method to approximate the largest

real number r such that f(X) − r is a sum of squares of polynomials. But current im-

plementations of SDP are not able to minimize polynomials in rather small number of

variables (> 6) of degree > 8. We make use of a result due to Hurwitz [26], to give a

criterion in terms of coefficients of a polynomial to be a sum of squares. Then, using this

criterion, we introduce a much faster method to approximate a lower bound, in this case

using geometric programs (GP).

The second variant is where we wish to determine when a given multi-sequence of reals

comes from a Borel measure supported on a given subset K of Rn. This is the so called

K-Moment Problem. Using Jacobi’s Theorem for archimedean quadratic modules [27], we

generalize a result of Berg et al. which states that the closure of the cone ∑R[X]2 in

a weighted `1-topology consists of nonnegative polynomials on a hypercube [8, 9]. Then

we substitute `1-topology with a locally convex topology τ , ∑R[X]2 by a cone C and

the hypercube by a closed set K, and study the relation between C
τ

and Psd(K) to

solve the moment problem for a τ -continuous linear functional on R[X]. We investigate

the moment problem for weighted `p-continuous positive semidefinite (PSD) functionals

and coefficientwise convergence topology on R[X]. Then, we fix a set K, and find an

appropriate locally convex topology τ , such that ∑R[X]2d, solves the K-moment problem

for τ -continuous linear functionals. In other words, we prove that a τ -continuous linear

functional nonnegative on ∑R[X]2d is representable by a Borel measure on K.
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Introduction

Hilbert’s problems are a set of (originally) unsolved problems in mathematics proposed

by Hilbert at the beginning of the 20th century. Hilbert’s problems were designed to serve

as examples for kinds of problems whose solutions would lead to the development of new

disciplines in mathematics 1. The 17th problem, in its simplest form is as follows:

“Given a multivariate polynomial that takes only non-negative values over the
reals, can it be represented as a sum of squares of rational functions?”

This was solved in the affirmative, in 1927, by Emil Artin [2]. A constructive algorithm

was found by Delzell in 1984 [12].

The interest of Hilbert in this problem dates back to Minkowski’s thesis defence in

1885, where Minkowski made the following assertion:

“It is not likely that every nonnegative form can be represented by a sum of
squares of forms.”

Hilbert was suspicious about the validity of the above assertion (see [10, Section 6.6] for

historical notes). His later works resulted in a complete (non-constructive) characteriza-

tion of the problem, in terms of number of variables, n, and the degree of the polynomial,

d. In 1888, Hilbert proved that a globally nonnegative real homogeneous polynomial in n

variables of degree d is a sum of squares (SOS) if and only if (n ≤ 2) or (d = 2) or (n = 3

and d = 4) (see [25]).

Hilbert’s proof is non-constructive and uses nontrivial facts from the theory of com-

plex projective algebraic curves. The first explicit example of a globally nonnegative real

polynomial which is not a sum of squares of polynomials was given in 1967 by Motzkin

[46], using the inequality

(
m

∏
i=1

ai)

1
n

≤
1

n

m

∑
i=1

ai,

1The list consists of 23 problems. Hilbert originally included 24 problems on his list, but decided against
including one of them in the published list.
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for a list of nonnegative real numbers a1 . . . , am known as arithmetic-geometric mean

inequality:

s(X,Y ) = 1 − 3X2Y 2
+X2Y 4

+X4Y 2.

It is known that deciding when a polynomial is globally nonnegative is NP-hard [5, The-

orem 1.1]. But the method of semidefinite programming (SDP) gives a polynomial time

decision procedure to determine whether a given polynomial is a sum of squares or not

[35, 47]. The significant difference in the computational complexity of deciding nonnega-

tivity and SOSness, also the similarity of them at the same time is enough to motivate a

comprehensive study of the representablity of nonnegative polynomials by sums of squares.

Such a result which relates nonnegativity of a polynomial to its representations is usually

called a Positivstellensatz.

Let R[X] = R[X1, . . . ,Xn] be the ring of polynomials in n variables X1, . . . ,Xn. We

denote the set of all finite sums of squares of polynomials by ∑R[X]2. Let S = {g1, . . . , gs}

be a finite set of polynomials in R[X]. We consider three objects associated to S:

– The basic closed semialgebraic set KS associated to S, i.e.,

KS ∶= {x ∈ Rn ∶ gi(x) ≥ 0, i = 1, . . . , n};

– The quadratic module MS of R[X] generated by S, i.e.,

MS ∶= {
s

∑
i=0

σigi ∶ g0 = 1 and σi ∈ ∑R[X]
2, i = 0, . . . , s} ,

the set of all SOS combinations of elements of S;

– And the preordering TS of R[X] generated by S, i.e.,

TS ∶=

⎧⎪⎪
⎨
⎪⎪⎩

∑
e∈{0,1}s

σeg
e
∶ σe ∈ ∑R[X]

2, ∀e ∈ {0,1}s
⎫⎪⎪
⎬
⎪⎪⎭

,

where for e = (e1, . . . , es), g
e = ∏

s
i=1 g

ei
i .

The quadratic module MS (or the preordering TS) is said to be Archimedean if for every

f ∈ R[X] there exists an integer N ≥ 1 such that N ± f ∈MS (or N ± f ∈ TS respectively).

The earliest Positivstellensatz was discovered first by Krivine [32] in 1964 and again by

Stengle [61] in 1974:
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Theorem. Suppose that S ⊆ R[X] is finite and f ∈ R[X]. Then f ≥ 0 on KS if and only

if there exists an integer m ≥ 0 and p, q ∈ TS such that pf = f2m + q. If f > 0 on KS, then

m can be taken to be 0.

Note that the solution to Hilbert’s 17th problem is a corollary of this theorem by taking

S = ∅ and f = (1
p)

2p(f2m + q) ∈ ∑R(X)2 if f ≠ 0.

In 1991, Schmüdgen proved a rather surprising version of Krivine’s Positivstellensatz

for compact semialgebraic sets [58] which had a great impact in the real algebraic geometry

community and resulted into a series of “Strikt Positivstellensätze”. He proved that for

a finite S, if KS is compact then f > 0 on KS implies f ∈ TS . This result was extended

by Putinar in 1993 to Archimedean quadratic modules [51] : If MS is Archimedean and

f > 0 on KS then f ∈ MS . The compactness of KS in this case is a consequence of

MS being Archimedean. In other words, if f > 0 on KS then f has a denominator-free

representation in terms of elements of S and hence the SDP technique can be used to

exploit this representation in a reasonable time. Even further improvements were found

later by Jacobi in 2001 [27] (see Corollary 1.3.11) and Marshall in 2002 [41] (see Theorem

1.3.10). Note that for a polynomial f ∈ R[X], if f ≥ 0 on KS , then f + ε > 0 on KS for all

ε > 0 and hence all of the Strikt Positivstellensätze can be applied to f + ε. This simple

observation shows that if f ≥ 0 on KS , then f can be approximated by elements of TS

and/or MS , by making small changes in the constant term of f .

One can summarize the main points of the previous paragraph as SOS representa-

tions and SOS approximations of nonnegative polynomials on basic closed semialgebraic

sets. This thesis consists of two parts dealing with these two aspects in a more general

framework of commutative rings and R-algebras. Chapter 3 describes our contribution

on SOS representations of nonnegative even-degree polynomials and some applications

to optimization. Chapters 4, 5 and 6 are dedicated to SOS approximations and their

applications to the moment problem.

In Chapter 1 we introduce some basic notations in real algebra. Most of the proofs

are omitted but suitable references are provided to indicate the chronological order of

advancements in the area. We begin by introducing preorderings and quadratic modules.

Then we explain when each of these rather smaller objects, can be extended to obtain

an ordering. We define the real spectrum of a commutative ring A as the space of or-
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derings of A and we explain how it can be equipped with spectral and patch topologies.

Then we explain the relation between orderings and ring homomorphisms into real closed

fields. For the rest of the thesis we stick to a specific subspace XA of the real spectrum,

corresponding to R-valued ring homomorphisms. We close the chapter by stating a cou-

ple of Positivstellensätze such as Representation Theorem, Jacobi’s Representation and

Schmüdgen’s Strikt Positivstellensatz, which will be used later.

We focus on the moment problem in Chapter 2. The term “moment problem” first

appeared in the works of Stieljes in 1894. However, some related results can be traced

back to earlier works of Chebyshef in 1873. See [1] for an extensive reading on history

and applications of the classical moment problem. In Section 2.1, we recall the definitions

of (real) topological vector spaces, (real) topological algebras, locally convex topologies,

locally multiplicatively convex topologies (lmc for short), seminorms and norms. The dual

of a topological vector space (V, τ), denoted by (V, τ)∗, is the set of all τ -continuous linear

functionals L ∶ V Ð→ R. In Section 2.2, we introduce the connection between materials

from Chapter 1 and the solution of the moment problem. Assuming V = R[X], the moment

problem is the question of when a given linear functional L on R[X] is representable as

an integration with respect to a Borel measure µ on a closed subset K of Rn, i.e.,

∀f ∈ R[X] L(f) = ∫
K
f dµ. (1)

Denote the set of nonnegative polynomials on K by Psd(K). Then an obvious necessary

condition for existence of such a representation (1) is that L(f) ≥ 0 for all f ∈ Psd(K).

Haviland in 1935 proved that this necessary condition is also sufficient [23, 24]. The

moment problem in its whole generality is difficult to solve. In fact, in 1999 Scheiderer

proved that the preordering Psd(K) is seldom finitely generated [56, Proposition 6.1].

So in general, there is no practical decision procedure for the membership problem for

Psd(K), and hence for L(Psd(K)) ⊆ R+. According to Schmüdgen’s Positivstellensatz,

when S is finite and KS is compact, every f ∈ Psd(KS) has an SOS approximation in terms

of elements of S as accurate as we need; i.e., if f ∈ Psd(KS) then for every ε > 0, f +ε ∈ TS .

Therefore, if a functional L is nonnegative on TS , then the equality L(f) = limε→0L(f + ε)

shows that it is also nonnegative on Psd(KS). In general Psd(KS) is not finitely generated,

but if it is then it is possible to determine if L(Psd(KS)) ⊆ R+ is true and hence Haviland’s

result is applicable. We continue with several well-known results on the moment problem
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for basic closed semialgebraic sets and also continuous linear functionals.

Chapter 3 is devoted to SOS representations. We present a new proof for a classical

result of Hurwitz and Reznick [26, 53] and a consequence of this result due to Fidalgo

and Kovacec [15]. We apply these results to determine a new sufficient condition for a

polynomial to be a SOS, which generalizes the results of [15] and [36]. Then, in Section 3.2,

we explain how this condition can be used to determine a lower bound for an even degree

polynomial, bounded below. We assign a geometric program (GP) (Definition 3.2.5) to

any such polynomial and the optimum value of this program, if it exists, results in a lower

bound for the polynomial. Although the lower bound found by this method is typically

not as good as the lower bound found using SDP, a practical comparison confirms that

the computation is faster, and larger problems can be handled with this approach.

In Chapter 4 we return to the moment problem from a different point of view. In

Chapter 2, we saw that under certain algebraic conditions on the set K, every linear

functional which satisfies some nonnegativity constraints admits a representation as an

integral over K. In this chapter we relax the conditions on K and assume the extra

constraint of continuity of the linear functionals with respect to a family of seminormed

topologies on R[X]. In [7] Berg, Christensen and Ressel prove that the closure of the cone

∑R[X]2 in the polynomial ring R[X] in the topology induced by the `1-norm is equal to

Psd([−1,1]n). The result is deduced as a corollary of a general result, also established in

[7], which is valid for any commutative semigroup. In later work Berg and Maserick [9] and

Berg, Christensen and Ressel [8] establish an even more general result for a commutative

semigroup with involution, for the closure of the cone of sums of squares of symmetric

elements in the weighted `1-seminorm topology associated to an absolute value. We give

new proofs of these results which are based on Jacobi’s representation theorem [27]. At

the same time, we use Jacobi’s representation theorem 1.3.10 to extend these results from

sums of squares to sums of 2d-powers. In particular we show that for any integer d ≥ 1,

the closure of the cone of sums of 2d-powers ∑R[X]2d in R[X] in the topology induced

by the `1-norm is equal to Psd([−1,1]n).

In Chapter 5, we take a locally convex topology τ on R[X], a closed set K ⊆ Rn, and

a nonempty cone C ⊆ R[X]. We show that the inclusion

Psd(K) ⊆ C
τ

(2)
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implies that every τ -continuous linear functional L satisfying L(C) ⊆ R+ can be represented

as an integration with respect to a Borel measure on K, and vice versa. We explain that

the version of moment problem introduced in Chapter 2 is the special case of (2), where

C = TS or C = MS , K = KS and the topology τ is the finest locally convex topology

ϕ. After that, we fix the cone C = ∑R[X]2d and solve the equation Psd(K) = C
τ

for K,

where τ is a weighted `p-norm. Regarding the inclusion (2), for the special case of Chapter

2 the topology is assumed to be ϕ, and both K and C are related to each other by taking

K = KS and C = TS or C =MS . In chapters 4 and 5, we fixed C = ∑R[X]2d and solved

(2) in terms of K for various locally convex topologies.

In Chapter 6 by fixing C = ∑R[X]2d, for any closed set K ⊆ Rn we find a locally

convex topology TK , such that ∑R[X]2d
TK

= Psd(K). When S is compact, we show that

the sup-norm on K denoted by ∥ ⋅∥K , induces another topology, strictly finer than TK , but

we still have ∑R[X]2d
∥⋅∥K

= Psd(K). At the end of the Chapter 6, we make a comparison

among all topologies we studied throughout.

Appendix A is a review of the model theory of real closed fields, Tarski’s Transfer

Principal, and a concrete version of the Abstract Positivstellensatz.

Appendix B connects the two different parts of the thesis. The generalized moment

problem (GMP for short) is defined as an optimization problem on the set of positive

Borel measures M+(K) on a locally compact topological space K. It is shown that the

K-moment problem and polynomial optimization are variants of the GMP.

Appendix C contains the source code of implementing the computational method in-

troduces in Chapter 3 in Sage.
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Chapter 1

Preliminaries

We always denote by N the set of nonnegative integers {0,1,2, . . .}, Z the set of integers,

Q the set of rationals, R the set of reals and C the set of complex numbers. Throughout

A denotes a ring, which is assumed always to be commutative with 1. All ring homomor-

phisms are considered to be unitary. The ring of polynomials in X1, . . . ,Xn, with coeffi-

cients in A, i.e. A[X1, . . . ,Xn] will be denoted by A[X] for short. For X = (X1, . . . ,Xn),

a = (a1, . . . , an) ∈ A
n and α = (α1, . . . , αn) ∈ Nn, we defineXα ∶=Xα1

1 ⋯Xαn
n , ∣α∣ ∶= α1+⋯+αn

and aα ∶= aα1
1 ⋯aαnn with the convention 00 = 1. We usually assume that 1

2 ∈ A and hence

A is an Z[1
2]-algebra, unless otherwise is specified.

1.1 Orderings, Preorderings and Quadratic Modules

For a ring A, we denote by ∑A2, the set of all finite sums of squares of elements of A, i.e.

∑A2
∶= {

m

∑
i=1

a2
i ∶ m ∈ N and a1, . . . , am ∈ A}.

Definition 1.1.1. A partially ordered ring (A,+, ⋅,≤) is a ring (A,+, ⋅) together with a

transitive binary relation ≤ on A, satisfying

1. ∀x, y (x ≤ y → (∀z x + z ≤ y + z)),

2. ∀x, y (0 ≤ x,0 ≤ y → 0 ≤ x ⋅ y),

3. ∀x (0 ≤ x2).

A subset T of A is called a preordering if

T + T ⊆ T, ∑A2
⊆ T, T ⋅ T ⊆ T.

Note that for a partially ordered ring (A,+, ⋅,≤) the set A+ = {a ∈ A ∶ 0 ≤ a} forms a

preordering of A. We also note that the converse is true.

7



Proposition 1.1.2. Suppose that T is a preordering of A. A together with the binary

relation on A defined by a ≤T b ⇔ b − a ∈ T is a partially ordered ring. Moreover with

respect to this order A+ = {a ∈ A ∶ 0 ≤T a} = T .

Definition 1.1.3. M ⊆ A is called a quadratic module if M +M ⊆M , ∑A2 ⋅M ⊆M and

1 ∈M . An ordering P of A is a preordering satisfying P ∪ −P = A and P ∩ −P is a prime

ideal of A.

The following is straightforward and useful.

Proposition 1.1.4. Suppose M is a quadratic module of A, and 1
2 ∈ A then

1. M ∩ −M is an ideal of A.

2. −1 ∈M if and only if M = A.

Proof. 1. Let I =M ∩ −M . Clearly

I + I ⊆ I, − I = I, 0 ∈ I, A2I ⊆ I.

Using the identity a = (a+1
2 )2 − (a−1

2 )2 this yields also that AI ⊆ I and hence M ∩ −M is

an ideal of A.

2. If −1 ∈ M then 1 ∈ M ∩ −M . Since M ∩ −M is an ideal of A, this implies that

M ∩ −M = A and hence M = A.

A quadratic module (preordering) M is said to be proper, if −1 /∈M . The ideal M ∩−M

is called the support of M and is denoted by supp M .

If φ ∶ AÐ→ B is a ring homomorphism and N is a quadratic module of B, then φ−1(N)

is a quadratic module of A called the contraction of N to A. If M is a quadratic module

of A, then ∑B2φ(M), the set of all finite sums ∑ b2iφ(si), bi ∈ B, si ∈ M , is a quadratic

module of B called the extension of M to B.

Proposition 1.1.5. Suppose that M is a quadratic module of A and S is a multiplicatively

closed subset of A such that (M∩−M)∩S = ∅. Then the extension of M to S−1A is proper.

Proof. Elements of the extension of M to S−1A have the form ∑i(
ai
bi
)2si where ai ∈ A,

bi ∈ S, and si ∈ M . Since ∑i(
ai
bi
)2si =

s
b2

where b = ∏i bi and s = ∑i(ai∏j≠i bj)
2si, every

element of the extension has the form s
b2

, s ∈ M , b ∈ S. If −1 = s
b2

for some s ∈ M and

8



b ∈ S, then −b2t = st for some t ∈ S, hence −b2t2 = st2 ∈M . Therefore −b2t2 ∈ (M ∩−M)∩S

which is a contradiction.

The following proposition shows that every preordering is extensible to an ordering.

This result is originally due to Krivine [32], but the proof given here is due to Prestel [50].

Proposition 1.1.6. For any preordering T of A with −1 /∈ T , there exists an ordering P

of A containing T .

Proof. Let P be a preordering of A containing T and maximal subject to −1 /∈ P . Such a

preordering P exists by Zorn’s Lemma. We want to show that P is an ordering. We make

use of the fact that for any a ∈ A, P +aP is a preordering of A, P ⊆ P +aP and a ∈ P +aP .

If a ∈ A ∖ (P ∪ −P ), then −1 ∈ P + aP , −1 ∈ P − aP . Thus

−1 = s1 + at1, − 1 = s2 − at2, si, ti ∈ P, i = 1,2.

Then −at1 = 1 + s1, at2 = 1 + s2, so

−a2t1t2 = (1 + s1)(1 + s2) = 1 + s1 + s2 + s1s2.

Thus −1 = s1 + s2 + s1s2 + a
2t1t2 ∈ P , a contradiction. This proves P ∪ −P = A.

Let p = P ∩ −P . Clearly 0 ∈ p, p + p ⊆ p, −p = p and Pp ⊆ p. Then

Ap = (P ∪ −P )p ⊆ Pp ∪ −Pp ⊆ p.

This proves p is an ideal. Suppose ab ∈ p, a, b /∈ p. Replacing a, b by −a,−b if necessary, we

can assume a, b /∈ P . Thus −1 ∈ P + aP , −1 ∈ P + bP , so

−1 = s1 + at1, − 1 = s2 + bt2, si, ti ∈ P, i = 1,2.

Then

abt1t2 = (−t1a)(−t2b) = (1 + s1)(1 + s2) = 1 + s1 + s2 + s1s2,

so −1 = s1 + s2 + s1s2 − abt1t2. Since ab ∈ p and p is an ideal, this is an element of P , a

contradiction. This proves p is prime and hence P is an ordering of A.

Definition 1.1.7. A commutative ring A is called real if a2
1 + ⋅ ⋅ ⋅ + a

2
n = 0 implies that

ai = 0 for each i = 1, . . . , n. A field F is called formally real if, as a ring, F is real, i.e.,

−1 /∈ ∑F 2.

9



Remark 1.1.8. ∑A2 is the smallest preordering of A. If A is a real ring then −1 /∈ ∑A2.

Applying Proposition 1.1.6 to A, we deduce that any real ring admits an ordering and

consequently, every formally real field admits an ordering.

1.2 Real Spectrum and Positivstellensatz

Let A be a real ring. According to Proposition 1.1.6, A admits at least one nontrivial

ordering. In this section, we develop some basics to study the structure of a ring A, by

use of all possible orderings on A.

Definition 1.2.1. The set of all orderings of A is denoted by Sper(A) and is called the

real spectrum of A. For a preordering T of A, we denote the set of all orderings of A

containing T by SperT (A). For a ∈ A, define the set

U(a) ∶= {P ∈ Sper(A) ∶ a /∈ P}.

The family {U(a) ∶ a ∈ A} forms a subbasis for a topology on Sper(A) called the spectral

topology . The family {U(a), U(a)c ∶ a ∈ A}, again, forms a subbasis for a topology called

the patch topology . Here, U(a)c denotes the complement of U(a) in Sper(A), i.e.,

U(a)c = Sper(A) ∖U(a).

Remark 1.2.2. For a ring A, the following data are equivalent:

1. An ordering P of the ring A,

2. A couple (p,≤), where p is a prime ideal of A, and ≤ is an ordering of the field of

fractions of A
p , denoted by ffAp .

3. An equivalence class of ring homomorphisms α ∶ A Ð→ R where R is a real closed

field (see A.1 for definition), for the smallest equivalence relation, such that α and

α′ are equivalent if there exists a commutative diagram of ring homomorphisms:

A
α //

α′   A
AA

AA
AA

R

��
R′

10



One goes from (1) to (2) by taking (p,≤) = (supp P,≤), where ≤ is the ordering on ff A
supp P

induced by the ordering P on A, from (2) to (3) by taking α ∶ AÐ→ ffAp Ð→ R, where R is

the real closure of (ffAp ,≤), and from (3) to (1) by taking P = α−1 (R+) ([10, Proposition

7.1.2]).

Theorem 1.2.3. Sper(A) is compact in the patch topology and hence in the spectral

topology.

Proof. See [44, Theorem 2.4.1].

For a given ordering P of A and an element a ∈ A, we define the sign of a with respect

to P by

SgnP (a) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 a /∈ −P,

0 a ∈ P ∩ −P,

−1 a /∈ P.

So U(a) = {P ∈ Sper(A) ∶ SgnP (a) = −1}.

Theorem 1.2.4 (Abstract Positivstellensatz). Let T be a preordering of A and let a ∈ A.

Then

1. ∀P ∈ SperT (A) SgnP (a) > 0 ⇔ ∃p, q ∈ T (pa = 1 + q).

2. ∀P ∈ SperT (A) SgnP (a) ≥ 0 ⇔ ∃p, q ∈ T ∃m ∈ N (pa = a2m + q).

3. ∀P ∈ SperT (A) SgnP (a) = 0 ⇔ ∃m ∈ N (−a2m ∈ T ).

Proof. See [44, Theorem 2.5.2].

By Proposition 1.1.6, if −1 /∈ T then SperT (A) ≠ ∅ and clearly

T̃ = ⋂
P ∈SperT (A)

P

is a preordering of A containing T . We refer to T̃ as the saturation of T . We say a

preordering T is saturated if T̃ = T . It is easy to show that a preordering T is saturated

if and only if it is the intersection of a family of orderings.

We now study a specific subspace of Sper(A).

Definition 1.2.5. The set of all real valued ring homomorphisms will be denoted by XA,

i.e. XA = Hom(A,R).

11



Remark 1.2.6. It is well-known that the identity map is the only ring homomorphism

from R to R [44, Proposition 5.4.5]. If we take A to be an R-algebra, then for every ring

homomorphism α ∶ A Ð→ R, r ∈ R and a ∈ A, α(ra) = α(r)α(a) = rα(a) which implies

that α is also an R-algebra homomorphism.

To every element a ∈ A, we associate a function â ∶ XA Ð→ R, defined by â(α) = α(a).

The family of the sets of form

U(â) = {α ∈ XA ∶ â(α) < 0},

forms a subbasis for the topology on XA inherited from the product topology on RA. With

this topology XA is a Hausdorff space. By Remark 1.2.2, the map Θ ∶ XA Ð→ Sper(A),

defined by Θ(α) = α−1(R+) is obviously a topological embedding, giving Sper(A) the

spectral topology. So XA can be considered as a subspace of Sper(A) with the spectral

topology.

Example 1.2.7. Let A = R[X], the ring of polynomials on n variables, X1, . . . ,Xn. Every

ring homomorphism α ∈ Hom(R[X],R) is completely determined by its values on each

Xi, i = 1, . . . ,Xn. Conversely, for every choice of real numbers (x1, . . . , xn) ∈ Rn, the map

defined by Xi ↦ xi, determines a ring homomorphism on R[X] to R. So in this case

XR[X] = Hom(R[X],R) can be identified by Rn.

Lemma 1.2.8. XA is a closed subset of RA. If A = R[X], then XA = Rn as a topological

space.

Proof. See [44, Lemma 5.7.1].

Proposition 1.2.9. Let K be a nonempty subset of XA and let C(K) denote the algebra

of continuous real valued functions on K, then

1. The map Φ ∶ AÐ→ C(K) defined by Φ(a) = â∣K is a ring homomorphism.

2. Im(Φ) contains a copy of Z[1
2].

12



Proof. (1) This is clear. Let a, b ∈ A, for each α ∈K we have

Φ(a + b)(α) = (̂a + b)∣K(α)

= α(a + b)

= α(a) + α(b)

= â∣K(α) + b̂∣K(α)

= Φ(a)(α) +Φ(b)(α).

Similarly Φ(1) = 1 and Φ(a ⋅ b) = Φ(a) ⋅Φ(b).

(2) Since XA consists of unitary homomorphisms, 1̂(α) = α(1) = 1, so the constant

function 1 ∈ Φ(A). Moreover for each m ∈ Z and n ∈ N, m
2n ∈ A and m̂

2n is the constant

function m
2n which belongs to Im(Φ), so Z[1

2] ⊆ Im(Φ).

Note that in general, Φ is not an embedding. A necessary and sufficient condition on

K which forces Φ to be injective is given in Theorem 1.2.11.

Definition 1.2.10. To any subset S of A we associate a subset Z(S) of XA, called the

zeros of S or the variety of S by Z(S) ∶= {α ∈ XA ∶ ∀s ∈ S ŝ(α) = 0}.

Let us denote the ideal in A generated by S with ⟨S⟩, then it is easy to check that

Z(S) = Z(⟨S⟩), and the family {XA ∖ Z(S) ∶ S ⊆ A} are the open sets for a topology on

XA called the Zariski topology on XA. It is easy to check that the sets

D(a) ∶= {α ∈ XA ∶ â(α) ≠ 0},

for a ∈ A form a basis for the Zariski topology.

Theorem 1.2.11. Assume that the mapˆ∶ AÐ→ C(XA) is injective and K is a subset of

XA. Then the ring homomorphism Φ ∶ A Ð→ C(K) defined by Φ(a) = â∣K is injective if

and only if K is dense in Zariski topology.

Such a subset K ⊆ XA is usually called Zariski dense in XA

Proof of 1.2.11. Note that K is not a dense subset of XA in Zariski topology if and only

if there exists an element a ∈ A such that D(a) ≠ ∅ and D(a)∩K = ∅. Equivalently, there

exists a ∈ A such that â ≠ 0 and so a ≠ 0 but â∣K = 0, i.e., Φ(a) = 0. Hence ker Φ ≠ {0}

which means Φ is not injective.

13



1.3 Representation Theorem

In the previous section we developed a method to switch from an abstract ring to the

ring of continuous real valued functions. This approach reveals several facts about the

positivity and positive cones on A.

Definition 1.3.1. By a presemiprime M in A we mean a subset M of A such that 0,1 ∈M

and M +M ⊆M .

A preprime T in A is a presemiprime which is closed under multiplication, i.e. 0,1 ∈ T ,

T + T ⊆ T and T ⋅ T ⊆ T .

T is said to be generating if for each a ∈ A there exists an integer k ≥ 1 such that ka ∈ T −T .

A presemiprime M is said to be archimedean, if for each a ∈ A there exist integers n, k ≥ 1

such that k(n + a) ∈M .

Let T be a preprime and M be a presemiprime in A. M is said to be a T -module if

T ⋅M ⊆M .

For an integer d ≥ 1, we denote by ∑Ad, the preprime consists of sums of dth powers of

elements of A, i.e.

∑Ad ∶= {
m

∑
i=1

adi ∶ m ∈ N and a1, . . . , am ∈ A}.

A preprime T which is also a ∑Ad-module is called a preordering of exponent d.

One can easily see that a ∑A2-module is simply a quadratic module and a preordering

of exponent 2 is simply a preordering.

Theorem 1.3.2. Suppose T is a generating preprime of A and Q ⊆ A is a T -module

maximal subject to −1 /∈ Q. If Q is archimedean, then Q = α−1(R+) for some unique

unitary ring homomorphism α ∶ AÐ→ R.

Proof. See [44, Theorem 5.2.5].

Definition 1.3.3. For any subset S of A, set

KS ∶= {α ∈ XA ∶ α(S) ⊆ R+
}.

Also for K ⊆ XA, set

Psd(K) ∶= {a ∈ A ∶ ∀α ∈K â(α) ≥ 0}.

14



Remark 1.3.4. For any K ⊆ XA, Psd(K) = ⋂α∈K α
−1(R+) which is an intersection of

orderings of A. Therefore Psd(K) is always saturated.

Corollary 1.3.5. Suppose M ⊆ A is an archimedean T -module, T a generating preprime

of A. Then the following are equivalent:

1. KM ≠ ∅.

2. −1 /∈M .

Proof. See [44, Corollary 5.4.1].

Proposition 1.3.6. If M is an archimedean presemiprime, then KM is compact.

Proof. This is well known. KM is closed because it is intersection of closed sets

KM = ⋂
a∈M

â−1
(R+

).

Moreover for each a ∈ A there exist k,na ≥ 1 such that k(na ±a) ∈M , so ∣â(α)∣ ≤ na for all

α ∈ KM . Therefore

KM ⊆ ∏
a∈A

[−na, na],

which is compact by Tychonoff’s Theorem.

Definition 1.3.7. A preprime T is said to be torsion if for each a ∈ A, there exists an

integer n ≥ 1 such that an ∈ T . T is said to be weakly torsion if for each a ∈ A, there exist

integers k, l,m,n ≥ 1 such that k(l +ma)n ∈ T .

Example 1.3.8.

1. Any archimedean preprime is weakly torsion.

2. Any torsion preprime is weakly torsion.

3. For a compact subset K of XA and an integer n ≥ 1, let T0 consists of all ∑ani , with

âi > 0 on K together with 0. T0 is weakly torsion.

Remark 1.3.9.

1. By [41, Lemma 2.4], every weakly torsion preprime is generating.
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2. The polynomial identity

m!X =
m−1

∑
h=0

(−1)m−1−h
⎛
⎜
⎝

m − 1

h

⎞
⎟
⎠
[(X + h)m − hm],

shows that any preordering of any exponent is generating(See [21, Page 325].).

3. For any ring homomorphism φ ∶ AÐ→ B, if T is a weakly torsion in B then φ−1(T )

is also weakly torsion in A, but this is not true for generating preprimes (See [41,

Example 2.2].).

The following theorem is a generalization given by Marshall [41] of a result, usually

attributed to Kadison [30] and also Dubois [14]. But other versions of the result were also

proved earlier by Krivine [32, 33]. This also sharpens the results of Jacobi and Prestel in

[27, 28].

Theorem 1.3.10 (Representation Theorem). Suppose M is an archimedean T -module,

T a weakly torsion preprime in A. Then for each a ∈ A with â > 0 on KM there exists an

integer k ≥ 1 such that ka ∈M .

Proof. See [41, Theorem 2.3].

Corollary 1.3.11 (Jacobi’s Representation). Suppose M ⊆ A is an archimedean ∑A2d-

module for some integer d ≥ 1. Then, for each a ∈ A,

â > 0 on KM ⇒ ∃k ≥ 1 ka ∈M.

Proof. Combine the Representation Theorem with Example 1.3.8(2) (see [27] for the orig-

inal proof).

1.4 Schmüdgen’s Positivstellensatz

A finite boolean combination of basic open subsets of Sper(A) is called a constructible set ,

i.e., every constructible set is a finite union of the sets of the form

{P ∈ Sper(A) ∶ SgnP (ai) = 1,SgnP (bj) = −1,SgnP (ck) = 0},
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for a finite number of elements ai, bj and ck of A. The intersection of any constructible

subset of Sper(A) with XA is called a semialgebraic set . A basic closed semialgebraic is a

subset K of XA, for which there exist a1, . . . , am ∈ A such that

K = {α ∈ XA ∶ âi(α) ≥ 0, i = 1, . . . ,m}.

Clearly K = K{a1,...,am}.

For any subset S of A, we denote by TS (resp. MS) the smallest preordering (resp.

quadratic module) of A, containing S. We say T (resp. M) is finitely generated, if there

exists a finite set S ⊂ A such that T = TS (resp. M =MS).

Example 1.4.1. Let A = R[X], then XA = Rn and for any finite number of polynomials

f1, . . . , fm ∈ R[X], the basic closed semialgebraic set defined by f1, . . . , fm ∈ R[X] is the

solution set of the system of inequalities fi(x) ≥ 0, i.e. {x ∈ Rn ∶ fi(x) ≥ 0, i = 1, . . . ,m}.

In 1991, Schmüdgen asserted that for A = R[X], if a basic closed semialgebraic set KS is

compact, then any polynomial strictly positive on KS actually belongs to the preordering

TS [58]. This rather surprising result had a big impact in the area. Here we give an

algebraic proof of Schmüdgen’s result, based on the Concrete Positivstellensatz (Theorem

A.3.8) and Jacobi’s Representation Theorem (Corollary 1.3.11). This is a modification of

the proof due to Wörmann [67].

Lemma 1.4.2. Suppose that M is a quadratic module of A and a1, . . . , an ∈ M . If k −

∑
n
i=1 a

2
i ∈M for some integer k ≥ 1, then k ± ai ∈M , i = 1, . . . , n.

Proof. First note that if k − a2 ∈M , then

k ± a =
1

2
((k − 1) + (k − a2

) + (a ± 1)2
) ∈M.

Therefore, if k −∑ni=1 a
2
i ∈M then

k − a2
i = (k −

n

∑
j=1

a2
j) +∑

j≠i
a2
j ∈M,

so k ± ai ∈M , i = 1,⋯, n.

Theorem 1.4.3 (Wörmann). Let A be a finitely generated R-algebra and S ⊆ A be finite.

Then TS is archimedean if and only if KS is compact.
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Proof. Since A is a finitely generated R-algebra, there exist a1, . . . , an ∈ A such that

A = R[a1, . . . , an]. The implication (⇒) is a consequence of Proposition 1.3.6. To prove

(⇐), assume KS is compact. Then ̂
∑
n
i=1 a

2
i attains its maximum on KS . So k − ̂

∑
n
i=1 a

2
i > 0

on KS , for some integer k sufficiently large. By the Concrete Positivstellensatz A.3.8(1)

there exist p, q ∈ TS such that

p(k −
n

∑
i=1

a2
i ) = 1 + q,

so

(1 + q)(k −
n

∑
i=1

a2
i ) = p(k −

n

∑
i=1

a2
i )

2
∈ TS .

Let S′ = S ∪ {k −∑ni=1 a
2
i } and T ′ = TS′ , i.e.,

T ′ = TS + (k −
n

∑
i=1

a2
i )TS .

According to Lemma 1.4.2, T ′ is archimedean. Thus for each a ∈ A there exists an integer

m ≥ 1 such that m + a ∈ T ′. Then m + a = t1 + (k −∑ni=1 a
2
i )t2 for t1, t2 ∈ TS , so

(m + a)(1 + q) = t1(1 + q) + p(k −
n

∑
i=1

a2
i )

2t2 ∈ TS .

In particular, there exists an integer m ≥ 1 such that m − q ∈ T ′, so (m − q)(1 + q) ∈ TS . It

follows that

m +
m2

4
− q = (m − q)(1 + q) + (

m

2
− q)2

∈ TS .

Multiplying by k ∈ TS and adding (1 + q)(k −∑ni=1 a
2
i ) ∈ TS and q∑ni=1 a

2
i ∈ TS , we have

k(
m

2
+ 1)2

−
n

∑
i=1

a2
i ∈ TS .

By Lemma 1.4.2, TS is archimedean.

Theorem 1.4.4 (Schmüdgen). Let S be a finite subset of a finitely generated R-algebra

A. If KS is compact then for any a ∈ A, â > 0 on KS implies a ∈ TS.

Proof. Combine 1.3.10 and 1.4.3.
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Chapter 2

The Moment Problem

The classical K-moment problem for a given closed set K ⊆ Rn, is the question of

when a linear functional L ∶ R[X] Ð→ R is representable as integration with respect to

a positive Borel measure on K. An obvious necessary condition is that L(f) ≥ 0, for

all f ∈ Psd(K). In 1935, Haviland proved that this necessary condition is also sufficient

[23, 24]. Scheiderer showed that even for semialgebraic sets, except for few cases, Psd(K)

is not finitely generated [55], so in most of cases, there is no practical decision procedure

for the membership problem of Psd(K), and so for L(Psd(K)) ⊆ R+. In this chapter we

see how ideas from the previous chapter come together with ideas from functional analysis

to find practical solutions for the K-moment problem in some special cases of K.

2.1 Topological Vector Spaces

In the following, all vector spaces are over the field of real numbers (unless otherwise

specified). A vector space topology on a vector space V is a topology τ on V such that

every point of V is closed and the vector space operations, i.e., vector addition and scalar

multiplication, are τ -continuous. A topological vector space is a pair (V, τ) where V is a

vector space and τ is a vector space topology on V . A standard argument shows that τ is

Hausdorff.

A subset A ⊆ V is said to be convex if for every x, y ∈ A and λ ∈ [0,1], λx+(1−λ)y ∈ A.

A locally convex topology is a vector space topology which admits a neighbourhood basis

of convex open sets at each point. Suppose that in addition V is an R-algebra. A subset

U ⊆ V is called an m-set, if U ⋅ U ⊆ U . A locally convex topology τ on V is said to be

locally multiplicatively convex (or lmc for short) if there exists a fundamental system of

neighbourhoods for 0 consisting of m-sets. It is immediate from the definition that the
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algebra multiplication is continuous in a lmc-topology.

Definition 2.1.1. A function ρ ∶ V → R+ is called a seminorm, if

(i) ∀x, y ∈ V ρ(x + y) ≤ ρ(x) + ρ(y),

(ii) ∀x ∈ V ∀r ∈ R ρ(rx) = ∣r∣ρ(x).

If V is an R-algebra, ρ is called a submultiplicative seminorm, if in addition ρ satisfies the

following

(iii) ∀x, y ∈ V ρ(x ⋅ y) ≤ ρ(x)ρ(y).

Let F be a nonempty family of seminorms on V . The weakest topology on V making

all seminorms on F continuous is a locally convex topology on V . The family of sets of

the form

U ερ1,...,ρk(x) ∶= {y ∈ V ∶ ρi(x − y) ≤ ε, i = 1, . . . , k}

where ε > 0 and ρ1 . . . , ρk ∈ F , forms a basis for the topology generated by F on V . We

have the following characterization of locally convex and lmc spaces.

Theorem 2.1.2. Let V be an algebra and τ a topology on V . Then

1. τ is locally convex if and only if it is generated by a family of seminorms on V .

2. τ is lmc if and only if it is generated by a family of submultiplicative seminorms on

V .

Proof. See [29, Theorem 6.5.1] for (1) and [4, 4.3-2] for (2).

A norm on V is a function ∥ ⋅ ∥ ∶ V Ð→ R+ satisfying

1. ∥v∥ = 0⇔ x = 0,

2. ∀λ ∈ R, ∥λv∥ = ∣λ∣∥v∥,

3. ∀v1, v2 ∈ V, ∥v1 + v2∥ ≤ ∥v1∥ + ∥v2∥.

A topology τ on V is said to be normable (respectively metrizable), if there exists a

norm (respectively metric) on V which induces the same topology as τ . Every norm

induces a locally convex metric topology on V where the induced metric is defined by

d(v1, v2) = ∥v1 − v2∥.
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Theorem 2.1.3. Let (V, τ) be a topological vector space. If τ is first countable and T1,

then it is metrizable.

Proof. See [54, Theorem 1.24].

We denote the set of all τ -continuous linear functionals L ∶ V Ð→ R by V ∗
τ (or simply

V ∗, if there is no ambiguity about topology).

Remark 2.1.4. For two normed spaces (X, ∥⋅∥1) and (Y, ∥⋅∥2), a linear operator T ∶X Ð→

Y is said to be bounded if there exists N ≥ 0 such that for all x ∈ X, ∥T (x)∥2 ≤ N∥x∥1.

There is a standard result which states that boundedness and continuity in normed spaces

are equivalent.

Definition 2.1.5. For C ⊆ V , let

C∨
τ = {L ∈ V ∗

τ ∶ L ≥ 0 on C}

be the first dual of C and define the second dual of C by

C∨∨
τ = {a ∈ V ∶ ∀L ∈ C∨

τ , L(a) ≥ 0}.

The following is immediate from the definition:

Corollary 2.1.6. For a locally convex topological vector space (V, τ) and C,D ⊆ V , the

following statements hold

1. C ⊆D⇒D∨
τ ⊆ C

∨
τ .

2. C ⊆ C∨∨
τ .

3. C∨∨∨
τ = C∨

τ .

In the special case of our interest, when C is a cone, C∨∨
τ reflects more properties. A

subset C of V is called a cone if C + C ⊆ C and R+C ⊆ C. It is clear that every cone is

convex.

Theorem 2.1.7 (Separation). Suppose that V is a topological vector space and A and B

are disjoint nonempty convex sets in V . If A is open, then there exist L ∈ V ∗ and γ ∈ R

such that L(x) < γ ≤ L(y) for every x ∈ A and y ∈ B. Moreover, if B is a cone, then γ can

be taken to be 0.
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Proof. For the first part, see [29, Theorem 7.3.2]. For the rest, suppose that B is a cone

and L and γ are given as in the first part. If γ > 0, then L(y) > 0 for all y ∈ B. Therefore

∀ε > 0 εy ∈ B, so

0 < γ ≤ L(εy) = εL(y)
ε→0
ÐÐ→ 0,

a contradiction. This implies that γ ≤ 0. Note also that L ≥ 0 on B. Otherwise, L(x) <

γ ≤ L(y) < 0 for any x ∈ A and some y ∈ B. Then for r > 0, ry ∈ B and

L(x) < γ ≤ L(ry) = rL(y)
r→∞
ÐÐÐ→ −∞,

which is impossible. Therefore

∀x ∈ A∀y ∈ B L(x) < γ ≤ 0 ≤ L(y),

and hence γ can be chosen to be 0.

We denote the closure of C with respect to τ by C
τ
.

Corollary 2.1.8 (Duality). For any nonempty cone C in locally convex space (V, τ),

C
τ
= C∨∨

τ .

Proof. Since each L ∈ C∨
τ is continuous, for any a ∈ C

τ
, L(a) ≥ 0, so C

τ
⊆ C∨∨

τ . Conversely,

if a /∈ C
τ
, then since τ is locally convex, there exists an open convex set U of V containing

a with U ∩C = ∅. By 2.1.7, there exists L ∈ C∨
τ such that L(a) < 0, so a /∈ C∨∨

τ .

2.1.1 Finest Locally Convex Topology on a Vector Space

Let V be any vector space over R of countable infinite dimension. For any finite dimen-

sional subspace W of V , W has a natural topology making W homeomorphic with Rk

where dim(W ) = k. If W ′ ⊆W , then the natural topology of W ′ and the subspace topol-

ogy induced by W are identical. We define the topology ϕ on V as follows: U ⊆ V is open

if and only if U ∩W is open in W for each finite dimensional subspace W of V . That is,

our topology ϕ is just the direct limit topology over all finite dimensional subspaces of V .

Since the dimension of V is countably infinite, we can always fix a sequence of finite

dimensional subspaces V1 ⊆ V2 ⊆ V3 ⊆ ⋯ such that V = ⋃i≥1 Vi, e.g., just take Vi = Rv1 ⊕

⋯⊕Rvi where {v1, v2, . . .} is some basis for V . In this situation, each finite dimensional

subspace of V is contained in some Vi, so U ⊆ V is open if and only if U ∩Vi is open in Vi

for each i ≥ 1.
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Theorem 2.1.9. The open sets in V which are convex form a basis for the direct limit

topology. Moreover (V,ϕ) is a topological vector space and ϕ is the finest locally convex

topology on V .

Proof. See [44, Section 3.6].

Remark 2.1.10.

1. The vector space (V,ϕ) is not metrizable. Let U be a neighborhood of 0 in V .

From the proof of [44, Theorem 3.6.1], there exist ai ∈ R>0, i = 1,2, . . ., such that

∏
∞
i=1⟨−ai, ai⟩ ⊆ U , where

∞
∏
i=1

⟨−ai, ai⟩ = {∑
i

tiei ∶ −ai < ti < ai} ,

and {ei}
∞
i=1 forms a basis for V and all summands are 0 except for finitely many i. If

there exists a countable neighborhood basis at 0 then there exist real numbers aij ,

i, j = 1,2, . . . , such that

∏
∞
i=1⟨−a1i, a1i⟩,

∏
∞
i=1⟨−a2i, a2i⟩,

⋮

forms a neighborhood basis at 0. Take 0 < bi < aii for each i, then ∏∞
i=1⟨−bi, bi⟩

is a neighborhood of 0 which does not contain any of the above basic open sets, a

contradiction.

2. Every linear functional is continuous with respect to ϕ. For the weak topology

(induced by the set of all linear functionals), convex sets have the same closure as

they have under ϕ [54, Theorem 3.12].

3. Direct limit topology and finest locally convex topology are defined even when V is

uncountably infinite dimensional. But they only coincide when the space is countable

dimensional.

2.2 K-Moment Problem

Let X be a topological space. We denote the set of all finite signed Borel measures on X

by M(X). Its positive cone consisting of all finite Borel measures on X will be denoted

by M+(X).
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Definition 2.2.1. Given γα ∈ R, α ∈ Γ ⊆ Nn and a set K ⊆ Rn, the K-moment problem

asks whether there exists a finite Borel measure µ ∈ M+(K) such that

∫
K
Xα dµ = γα, ∀α ∈ Γ.

Remark 2.2.2. The most interesting case is when Γ = Nn. Since {Xα ∶ α ∈ Nn} is a basis

for R[X], to any real multi-sequence (γα)α∈Nn one can assign a unique linear functional

L ∶ R[X] Ð→ R such that L(Xα) = γα, α ∈ Nn. So the K-moment problem in this case

is equivalent to asking whether a given linear functional L on R[X] is representable by a

finite Borel measure on K, i.e., there exists µ ∈ M+(K) such that

L(f) = ∫
K
f dµ, f ∈ R[X]. (2.2.1)

An obvious necessary condition for (2.2.1) to hold is the following:

∀f ∈ Psd(K) L(f) ≥ 0. (2.2.2)

Haviland showed that this necessary condition is also sufficient. Here we prove a more

general version of what Haviland proved in [23, 24]. We assume the following version of

the Riesz Representation Theorem.

Theorem 2.2.3 (Riesz Representation Theorem). Let X be a locally compact Hausdorff

space, and let L ∶ Cc(X) Ð→ R be a positive linear function. Then there exists a unique

µ ∈ M+(X) such that L(f) = ∫X f dµ, for all f ∈ Cc(X).

Here Cc(X) denotes the R-algebra of all real valued continuous functions f on X with

compact support, i.e., the set

{x ∈X ∶ f(x) ≠ 0}

is compact, and L is positive means

L({f ∈ Cc(X) ∶ f ≥ 0 on X}) ⊆ R+.

Theorem 2.2.4. Suppose A is an R-algebra, X is a Hausdorff space, and ˆ∶ AÐ→ C(X)

is an R-algebra homomorphism such that for some p ∈ Psd(X), p̂−1([0, i]) is compact for

i = 1,2, . . . . Then for each linear functional L ∶ AÐ→ R satisfying L(Psd(X)) ⊆ R+, there

exists a Borel measure µ on X such that ∀a ∈ A L(a) = ∫X â dµ.
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Here Psd(X) denotes the set {a ∈ A ∶ â ≥ 0 on X}.

Proof of Theorem 2.2.4. (See [42, Theorem 3.1] or [44, Theorem 3.2.2].) Let A0 = {â ∶ a ∈

A}. A0 is a subalgebra of C(X).

Claim 1. L̄ ∶ A0 Ð→ R defined by L̄(â) = L(a) is a well-defined linear map.

Suppose â = 0. Then â ≥ 0, so L(a) ≥ 0. Similarly −̂a = −â ≥ 0, so −L(a) = L(−a) ≥ 0. This

proves â = 0⇒ L(a) = 0, which establishes Claim 1.

Define C′(X) to be the set of all continuous functions f ∶ X Ð→ R for which there

exists a ∈ A such that ∣f ∣ ≤ ∣â∣ on X. C′(X) is a subalgebra of C(X) and A0 ⊆ C′(X). If

f ∈ Cc(X) then ∣f ∣ ≤ i for some integer i ≥ 1. Since i ∈ A, then f ∈ C′(X) and hence Cc(X)

is a subalgebra of C′(X).

Claim 2. L̄ extends to a linear map L̄ ∶ C′(X) Ð→ R such that

L̄({f ∈ C′
(X) ∶ f ≥ 0 on X}) ⊆ R+.

By Zorn’s Lemma, there exists a pair (V, L̄) with V a subspace of C′(X) containing A0,

L̄ ∶ V Ð→ R extending L̄ ∶ A0 Ð→ R and satisfying

L̄({f ∈ V ∶ f ≥ 0 on X}) ⊆ R+, (2.2.3)

which is maximal with respect to the partial ordering ⪯ defined by

(V1, L
′
1) ⪯ (V2, L

′
2) ⇔ V1 ⊆ V2 ∧L

′
2∣V1 = L

′
1. (2.2.4)

We show that V = C′(X). To the contrary, suppose that g ∈ C′(X) ∖ V . Since g ∈ C′(X),

∣g∣ ≤ ∣â∣ for some a ∈ A. Also, note that (â ± 1)2 ≥ 0 on X and hence ∣g∣ ≤ ∣â∣ ≤ â2+1
2 ∈ A0.

Thus there exists e ∈ R such that

sup{L̄(f1) ∶ f1 ∈ V, f1 ≤ g} ≤ e ≤ inf{L̄(f2) ∶ f2 ∈ V, g ≤ f2}.

Extend L̄ to V ⊕Rg by defining L̄(g) = e, i.e., L̄(f + dg) = L̄(f) + de, for f ∈ V and d ∈ R.

Let h = f + dg ∈ V ⊕Rg with h ≥ 0 on X.

If d = 0 then L̄(h) = L̄(f) which is nonnegative by (2.2.3).

If d > 0 then −
f
d ≤ g on X, so L̄(−fd ) ≤ e by (2.2.4), i.e., L̄(f + dg) ≥ 0.

If d < 0 then −
f
d ≥ g on X, so L̄(−fd ) ≥ e by (2.2.4), i.e., L̄(f + dg) ≥ 0.
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This contradicts the maximality of (V, L̄), so V = C′(X).

Since Cc(X) ⊆ C′(X), Claim 2 allows us to apply the Riesz Representation Theorem

to get a Borel measure µ ∈ M+(X) such that

∀f ∈ Cc(X) L̄(f) = ∫
X
f dµ.

It remains to show that this holds for every f ∈ C′(X).

Let f ∈ C′(X) and decompose f as f+ − f− where f+ = max{f,0} and f− = −min{f,0}.

Since f+, f− ∈ C′(X) are non-negative and f = f+ − f−, we can reduce to the case where

f ≥ 0 on X. By hypothesis, there exists p ∈ A such that p̂ ≥ 0 on X and for each i ∈ N,

p̂−1([0, i]) is compact. Let Xi = {x ∈ X ∶ p̂(x) ≤ i} and X ′
i = {x ∈ X ∶ q(x) ≤ i} where

q = f + p̂. Clearly X ′
i ⊆Xi, so X ′

i is compact and

X ′
i ⊆X

′
i+1 and ⋃

i≥1

X ′
i =X.

Let Yi = {x ∈ X ′
i+1 ∶ i + 1

2 ≤ q(x)}. Using Urysohn’s Lemma for each i, there exists a

continuous function gi ∶ X
′
i+1 Ð→ [0,1] such that gi∣Yi = 0 and gi∣X′

i
= 1. Extend gi to X

by defining gi = 0 on X ∖X ′
i+1

1. Take fi = fgi. Then fi ∈ Cc(X) and

0 ≤ fi ≤ f, fi = f on X ′
i , fi = 0 on X ∖X ′

i+1.

Claim 3. q2

i ≥ f − fi ≥ 0 on X.

The inequality f − fi ≥ 0 is clear. Since f = fi on X ′
i , the inequality is clear on X ′

i . For

x /∈ X ′
i , q(x) > i, so q(x)2 ≥ iq(x) = i(f(x) + p̂(x)) ≥ if(x) ≥ i(f(x) − fi(x)), which shows

that the inequality holds off X ′
i .

By Claim 3, 1
i L̄(q

2) ≥ L̄(f) − L̄(fi) ≥ 0. So L̄(f) = lim
i→∞

L̄(fi). Thus

∫
X
f dµ = lim

i→∞∫X
fi dµ = lim

i→∞
L̄(fi) = L̄(f).

Theorem 2.2.5 (Haviland). For a linear functional L ∶ R[X] Ð→ R and a closed set

K ⊆ Rn, the following are equivalent:

1. L comes from a Borel measure on K, i.e.,

∃µ ∈ M+(K)∀f ∈ R[X] L(f) = ∫
K
f dµ.

1This also can be done using Tietze Extension Theorem.
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2. L(Psd(K)) ⊆ R+.

Proof. The polynomial p(X) = ∑
n
i=1X

2
i satisfies the condition of Theorem 2.2.4. Now the

conclusion is trivial.

Actually, the original result of Haviland in [23, 24] is not stated in terms of Borel

measures, but rather in terms of distribution functions. Haviland’s Theorem gives a

complete solution for the K-moment problem. Scheiderer [55] showed that Psd(K) usually

is not finitely generated. So usually, there is no decision procedure for the membership

problem for Psd(K). Therefore the Haviland’s solution is usually impractical, unless,

positivity over a decidable subcone of Psd(K) gives a certificate for positivity over the

whole of Psd(K).

Proposition 2.2.6. For every closed subset K of Rn, Psd(K)
ϕ
= Psd(K).

Proof. Each evaluation map ea ∶ R[X] Ð→ R; f ↦ f(a), is continuous by Remark

2.1.10.(2), so e−1
a (R+) is closed. Therefore Psd(K) = ⋂a∈K e

−1
a (R+) is also closed.

Proposition 2.2.6, shows that Psd(K) is closed in the finest locally convex topology ϕ

on R[X]. So the closure of every subcone C of Psd(K) with respect to ϕ, is contained in

Psd(K).

Definition 2.2.7. We say C ⊆ R[X] solves the K-moment problem or C satisfies the

K-strong moment property (SMP), if C∨∨
ϕ = Psd(K).

Note that by Duality Theorem 2.1.8 and Proposition 2.2.6, C satisfies K-SMP if and

only if

C
ϕ
= Psd(K). (2.2.5)

Moreover, by Corollary 2.1.6(3), C satisfies K-SMP if and only if C∨
ϕ = Psd(K)∨ϕ.

The following theorem describes the connection between K-SMP and K-moment prob-

lem and also summarizes materials of this section.

Theorem 2.2.8. Let K be a closed subset of Rn. Then a cone C ⊆ Psd(K) satisfies

K-SMP if and only if for each L ∈ C∨
ϕ there exists µ ∈ M+(K) such that

∀f ∈ R[X] L(f) = ∫
K
f dµ.

In the upcoming section we list several examples of cases where K-SMP holds and also

cases where K-SMP fails for a basic closed semialgebraic set K.
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2.3 Moment Problem for Semialgebraic sets

In this section we list some result concerning the K-moment problem when K is basic

closed semialgebraic set. We begin with several historical 1-dimensional examples for

which K-SMP holds.

Example 2.3.1. Recall from Chapter 1 that for a finite set S ⊂ R[X], TS and MS denote

the preordering and the quadratic module generated by S, respectively. Also KS is the

basic closed semialgebraic set {a ∈ Rn ∶ ∀f ∈ S f(a) ≥ 0}.

• (Stieltjes [62]) If S = {X} then TS = MS solves the KS-moment problem. Here

KS = [0,∞).

• (Hamburger [20]) ∑R[X]2 satisfies R-SMP.

• (Hausdorff [22]) If S = {X,1 −X} then TS = MS solves the KS-moment problem.

Here KS = [0,1].

• (Švekov [64]) Let S = {X2 −X} so KS = (−∞,0] ∪ [1,∞). Then TS =MS solves the

KS-moment problem.

In general the following well-know results hold for compact semialgebraic sets:

Theorem 2.3.2 (Schmüdgen). If KS is compact, then TS satisfies the KS-SMP.

Proof. Let f ∈ Psd(KS) and ε > 0. Then f + ε > 0 on KS , so f + ε ∈ TS by Theorem 1.4.4.

So, for each L ∈ T∨S , L(f + ε) ≥ 0, letting ε → 0, we see L(f) ≥ 0. Thus f ∈ T∨∨S = TS
ϕ
, so

TS
ϕ
= Psd(KS).

Theorem 2.3.3. If MS is archimedean, then MS satisfies the KS-SMP.

Proof. Follow the argument of the previous theorem, using the Representation Theorem

1.3.10.

Let S = {g1, . . . , gs} ⊆ R[X], M =MS and d ≥ 0 be an integer number. Let R[X]d be

the subspace of R[X] consisting of polynomials of degree at most d and Md =M ∩R[X]d.

Each f ∈M is expressible as f = ∑
s
i=0 σigi with σi ∈ ∑R[X]2 and g0 = 1. Define

M[d] ∶= {
s

∑
i=0

σigi ∶ σi ∈ ∑R[X]
2, deg(σigi) ≤ d, i = 0, . . . , s}.
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Clearly M[d] ⊆Md, but for f ∈M , of relatively low degree, the degree of each term σigi

in any representation of f may be large, so in general M[d] ⫋ Md. We say M is stable

if there exists a function ` ∶ Z+ Ð→ Z+ such that for each d ≥ 0 and f ∈ Md, f has a

representation f = ∑
s
i=0 σigi, with deg(σigi) ≤ `(d) for each i. The following result, due to

Scheiderer connects the concept of stability to the moment problem.

Theorem 2.3.4. Let M =MS be a finitely generated quadratic module in R[X]. Then

1. ε +
√

supp M ⊆M for all real ε > 0. In particular
√

supp M ⊆M
ϕ

.

2. If M is stable then M
ϕ
=M +

√
supp M and M

ϕ
is also stable.

Proof. See [56, Theorem 3.17] or [44, Theorem 4.1.2].

Lemma 2.3.5. If KS contains an n-dimensional cone, then MS is stable.

Proof. (See [44, Example 4.1.5]) We prove that if f, g ∈ R[X] are nonnegative on an

n-dimensional cone C in Rn, then deg(f + g) = max{deg(f),deg(g)}. This is clear if

deg(f) ≠ deg(g). Suppose that deg(f) = deg(g) = d and f = f0 + ⋅ ⋅ ⋅ + fd, g = g0 + ⋅ ⋅ ⋅ + gd

are the homogeneous decompositions of f and g. Since fd and gd are nonzero, there exists

p, an interior point of C such that fd(p) ≠ 0 and gd(p) ≠ 0. C is a cone, so for any λ > 0,

λp ∈ C, therefore f(λp), g(λp) ≥ 0. But f(λp) and g(λp) are polynomials of degree d on

λ and since f(λp), g(λp) ≥ 0, we see that fd(p), gd(p) > 0. Thus fd(p) + gd(p) > 0 and

hence fd + gd ≠ 0. This proves that deg(f + g) = d. Now, one can take ` to be the identity

function on Z+.

For the case n = 1 in [34], Kuhlmann and Marshall completely described the relation

between TS and KS for finite S. Assume that K is a nonempty, closed semialgebraic set

in R, i.e., a finite union of closed intervals and points. The natural description of K is a

certain finite subset S of R[X], defined as follows:

• If K has a least element a, then X − a ∈ S.

• If K has a greatest element b, then b −X ∈ S.

• For every a, b ∈K, a < b, if (a, b) ∩K = ∅, then (X − a)(b −X) ∈ S.

• These are the only elements of S.
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Theorem 2.3.6. Suppose n = 1 and KS is not compact. Then TS satisfies KS-SMP if

and only if S contains the natural description of KS.

Proof. Note that KS contains a 1-dimensional cone, so TS is stable by Lemma 2.3.5 and

is ϕ-closed by 2.3.4 since
√

supp TS = ⟨0⟩. So it is enough to check TS = Psd(KS). For a

complete proof see [34, Theorem 2.2].

Remark 2.3.7. Theorem 2.3.6 enables us to find an example for which the K-moment

problem depends on the description of K. For example [0,∞) = K{X3}, but {X3} does

not contain the natural description of [0,∞), so T{X3} does not satisfy the [0,∞)-SMP,

but T{X} does.

In contrast to Theorem 2.3.6, there is no similar result for n ≥ 2:

Proposition 2.3.8. Suppose n ≥ 2 and KS contains a 2-dimensional affine cone. Then

TS does not satisfy KS-SMP.

Proof. See [34, Corollary 3.10].

The dimension of a semialgebraic set K in Rn is defined to be the Krull dimension of

the ring
R[X]
Z(K) . Scheiderer proved the following result which connects the two concepts of

stability and dimension.

Theorem 2.3.9. If MS is stable and dim(KS) ≥ 2 then MS does not satisfy KS-SMP.

Proof. See [56, Theorem 5.4].

2.4 Moment Problem for Continuous Linear Functionals

Now, we return to the equation (2.2.5). In Section 2.3, we reviewed several attempts to

solve a variation of (2.2.5) for K = KS and C = TS or C =MS , i.e.,

MS
ϕ
= Psd(KS) or TS

ϕ
= Psd(KS).

We quote a result due to Berg, Christensen and Jensen [6], concerning the [−1,1]n-moment

problem for `1-continuous linear functionals. They proved that every positive semidefinite

(PSD), `1-continuous functional on R[X] is representable by a measure on [−1,1]n, i.e.,

∑R[X]2
`1
= Psd([−1,1]n).
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Thus, instead of the whole family M+([−1,1]n), we reduce to the subfamily that induces

`1-continuous functionals. Later, this result has been generalized by Berg and Maserick

[9], Lasserre and Netzer [39] and Ghasemi, Marshall and Wagner [19].

These observations suggest that solution of the classical moment problem might be

easier for subclasses of functionals, in this case `1-continuous functionals. We rewrite

(2.2.5) in the following format:

C
τ
= Psd(K), (2.4.1)

for a cone C, a closed set K and a locally convex topology τ2. Note that by Duality

(Corollary 2.1.8), (2.4.1) is equivalent to C∨∨
τ = Psd(K). So if (2.4.1) holds, then every

τ -continuous linear functional L ∶ R[X] Ð→ R, with L(C) ⊆ R+ is representable as an

integration with respect to a Borel measure on K, i.e.,

L(f) = ∫
K
f dµ, ∀f ∈ R[X].

We discuss (2.4.1) in chapters 4, 5 and 6.

2Since in general we are interested in solving the moment problem for τ -continuous linear functional, it
is natural to work with the locally convex topologies. This approach enables us to switch between τ and
its weak topology, without losing the closures of convex sets, and for our purpose cones.
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Chapter 3

Lower Bounds for a Polynomial in terms of its

Coefficients

In this chapter, we make use of a result of Hurwitz and Reznick [26, 53], and a con-

sequence of this result due to Fidalgo and Kovacec [15], to determine a new sufficient

condition for a polynomial f ∈ R[X1, . . . ,Xn] of even degree to be a sum of squares. We

apply this result to obtain a new lower bound fgp for f , and we see how fgp can be com-

puted using geometric programming. The lower bound fgp is generally not as good as

the lower bound fsos introduced by Lasserre [35] and Parrilo and Sturmfels [47], which is

computed using SDP, but a run time comparison shows that, in practice, the computation

of fgp is much faster. The computation is simplest when the highest degree term of f has

the form ∑
n
i=1 aiX

2d
i , ai > 0, i = 1, . . . , n. The material of this chapter is mainly taken from

[18].

Fix a non-constant polynomial f ∈ R[X] = R[X1,⋯,Xn], where n ≥ 1 is an integer

number, and let f∗ be the global minimum of f , defined by

f∗ ∶= inf{f(a) ∶ a ∈ Rn}.

We say f is PSD if f(a) ≥ 0 ∀a ∈ Rn. Clearly

inf{f(a) ∶ a ∈ Rn} = sup{r ∈ R ∶ f − r is PSD},

so finding f∗ reduces to determining when f − r is PSD.

Suppose that deg(f) = m and decompose f as f = f0 + ⋯ + fm where fi is a form (a

homogeneous polynomial) with deg(fi) = i, i = 0, . . . ,m. This decomposition is called the

homogeneous decomposition of f . A necessary condition for f∗ ≠ −∞ is that fm is PSD

(hence m is even). A form g ∈ R[X] is said to be positive definite (PD) if g(a) > 0 for all

a ∈ Rn, a ≠ 0. A sufficient condition for f∗ ≠ −∞ is that fm is PD [43].
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It is known that deciding when a polynomial is PSD is NP-hard [5, Theorem 1.1].

Deciding when a polynomial is a sums of squares (SOS) is much easier. Actually, there is

a polynomial time method, known as semidefinite programming (SDP), which can be used

to decide when a polynomial f ∈ R[X] is SOS [35, 47]. Note that any SOS polynomial is

obviously PSD, so it is natural to ask if the converse is true, i.e. is every PSD polynomial

SOS? This question first appeared in Minkowski’s thesis and he guessed that in general

the answer is NO. Later, in [25], Hilbert gave a complete answer to this question, see

[10, Section 6.6]. Let us denote the cone of PSD forms of degree 2d in n variables by

P2d,n and the cone of SOS forms of degree 2d in n variables by Σ2d,n. Hilbert proved that

P2d,n = Σ2d,n if and only if (n ≤ 2) or (d = 1) or (n = 3 and d = 2).

Let ∑R[X]2 denote the cone of all SOS polynomials in R[X] and, for f ∈ R[X], define

fsos ∶= sup{r ∈ R ∶ f − r ∈ ∑R[X]
2
}.

Since SOS implies PSD, fsos ≤ f∗. Moreover, if fsos ≠ −∞ then fsos can be computed

numerically in polynomial time, as close as desired, using SDP [35] [47]. We denote by

P ○
2d,n and Σ○

2d,n, the interior of P2d,n and Σ2d,n in the vector space of forms of degree 2d in

R[X], equipped with the euclidean topology. A necessary condition for fsos ≠ −∞ is that

f2d ∈ Σ2d,n. A sufficient condition for fsos ≠ −∞ is that f2d ∈ Σ○
2d,n [45, Proposition. 5.1].

According to our notations, every polynomial f ∈ R[X] can be written as f(X) =

∑α∈Nn fαX
α, where fα ∈ R and fα = 0, except for finitely many α. Assume now that f

is non-constant and has even degree. Let Ω(f) = {α ∈ Nn ∶ fα ≠ 0} ∖ {0,2dε1, . . . ,2dεn},

where 2d = deg(f), εi = (δi1, . . . , δin), and

δij =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 i = j

0 i ≠ j.

We denote f0 and f2dεi by f0 and f2d,i for short. Thus f has the form

f = f0 + ∑
α∈Ω(f)

fαX
α
+

n

∑
i=1

f2d,iX
2d
i . (3.0.1)

Let ∆(f) = {α ∈ Ω(f) ∶ fαX
α is not a square in R[X]} = {α ∈ Ω(f) ∶ either fα <

0 or αi is odd for some 1 ≤ i ≤ n}. Since the polynomial f is usually fixed, we will of-

ten denote Ω(f) and ∆(f) just by Ω and ∆ for short.
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Let f̄(X,Y ) = Y 2df(X1

Y , . . . ,
Xn
Y ). From (3.0.1) it is clear that

f̄(X,Y ) = f0Y
2d
+ ∑
α∈Ω

fαX
αY 2d−∣α∣

+
n

∑
i=1

f2d,iX
2d
i

is a form of degree 2d, called the homogenization of f . We have the following well-known

result:

Proposition 3.0.1. f is PSD if and only if f̄ is PSD. f is SOS if and only if f̄ is SOS.

Proof. See [44, Proposition 1.2.4].

3.1 Sufficient conditions for a form to be SOS

We recall the following result, due to Hurwitz and Reznick.

Theorem 3.1.1 (Hurwitz-Reznick). Suppose p(X) = ∑
n
i=1 αiX

2d
i − 2dXα1

1 ⋯Xαn
n , where

α = (α1, . . . , αn) ∈ Nn, ∣α∣ = 2d. Then p is sum of binomial squares (SOBS).

Here, SOBS is shorthand for a sum of binomial squares, i.e., a sum of squares of the

form (aXα − bXβ)2

In his 1891 paper [26], Hurwitz uses symmetric polynomials in X1, . . . ,X2d to give an

explicit representation of ∑2d
i=1X

2d
i − 2d∏2d

i=1Xi as a sum of squares. Theorem 3.1.1 can

be deduced from this representation. Theorem 3.1.1 can also be deduced from results in

[52, 53], specially, from [53, Theorems 2.2 and 4.4]. Here is another proof.

Proof. By induction on n. If n = 1 then p = 0 and the result is clear. Assume now that

n ≥ 2. We can assume each αi is strictly positive, otherwise, we reduce to a case with at

most n − 1 variables.

Case 1: Suppose that there exist 1 ≤ i1, i2 ≤ n, such that i1 ≠ i2, with αi1 ≤ d and

αi2 ≤ d. Decompose α = (α1, . . . , αn) as α = β + γ where β, γ ∈ Nn, βi1 = 0, γi2 = 0 and

∣β∣ = ∣γ∣ = d. Then

(Xβ
−Xγ

)
2
=X2β

− 2XβXγ
+X2γ

=X2β
− 2Xα

+X2γ ,

34



therefore,

p(X) =
n

∑
i=1

αiX
2d
i − 2dXα

=
n

∑
i=1

αiX
2d
i − d(X2β

+X2γ
− (Xβ

−Xγ
)

2
)

=
1

2
(
n

∑
i=1

2βiX
2d
i − 2dX2β

)

+
1

2
(
n

∑
i=1

2γiX
2
i d − 2dX2γ

) + d(Xβ
−Xγ

)
2.

Each term is SOBS, by the induction hypothesis.

Case 2: Suppose we are not in Case 1. Since there is at most one i satisfying αi > d,

it follows that n = 2, so p(X) = α1X
2d
1 + α2X

2d
2 − 2dXα1

1 Xα2
2 . We know that p ≥ 0 on R2,

by the arithmetic-geometric inequality. Since n = 2 and p is homogeneous, it follows that

p is SOS (see [25]).

Showing p is SOBS requires more work. Denote by AGI(2, d) the set of all homogeneous

polynomials of the form p = α1X
2d
1 + α2X

2d
2 − 2dXα1

1 Xα2
2 , α1, α2 ∈ N and α1 + α2 = 2d.

This set is finite. If α1 = 0 or α1 = 2d then p = 0 which is trivially SOBS. If α1 = α2 = d

then p(X) = d(Xd
1 −X

d
2 )

2, which is also SOBS. Suppose now that 0 < α1 < 2d, α1 ≠ d

and α1 > α2 (The argument for α1 < α2 is similar). Decompose α = (α1, α2) as α = β + γ,

β = (d,0) and γ = (α1 − d,α2). Expand p as in the proof of Case 1 to obtain

p(X) =
1

2
(

2

∑
i=1

2βiX
2d
i − 2dX2β

) +
1

2
(

2

∑
i=1

2γiX
2d
i − 2dX2γ

) + d(Xβ
−Xγ

)
2.

Observe that ∑2
i=1 2βiX

2d
i − 2dX2β = 0.

Thus p = 1
2p1 + d(X

β − Xγ)2, where p1 = ∑
2
i=1 2γiX

2d
i − 2dX2γ . If p1 is SOBS then

p is also SOBS. If p1 is not SOBS then we can repeat to get p1 = 1
2p2 + d(X

β′ −Xγ′)2.

Continuing in this way we get a sequence p = p0, p1, p2,⋯ with each pi an element of the

finite set AGI(2, d), so pi = pj for some i < j. Since pi = 2i−jpj+ a sum of binomial squares,

this implies pi is SOBS and hence that p is SOBS.

In [15], Fidalgo and Kovacec prove the following result, which is a corollary of the

Hurwitz-Reznick result.

Corollary 3.1.2 (Fidalgo-Kovacek). For a form p(X) = ∑
n
i=1 βiX

2d
i − µXα such that

α ∈ Nn, ∣α∣ = 2d, βi ≥ 0 for i = 1,⋯, n, and µ ≥ 0 if all αi are even, the following are

equivalent:
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1. p is PSD.

2. µ2d
∏
n
i=1 α

αi
i ≤ (2d)2d

∏
n
i=1 β

αi
i .

3. p is SOBS.

4. p is SOS.

Proof. See [15, Theorem 2.3]. (3) ⇒ (4) and (4) ⇒ (1) are trivial, so it suffices to show

(1) ⇒ (2) and (2) ⇒ (3). If some αi is odd then, making the change of variables Yi = −Xi,

Yj = Xj for j ≠ i, µ gets replaced by −µ. In this way, we can assume µ ≥ 0. If some αi

is zero, set Xi = 0 and proceed by induction on n. In this way, we can assume αi > 0,

i = 1, . . . , n. If µ = 0 the result is trivially true, so we can assume µ > 0. If some βi is zero,

then (2) fails. Setting Xj = 1 for j ≠ i, and letting Xi →∞, we see that (1) also fails. Thus

the result is trivially true in this case. Thus we can assume βi > 0, i = 1, . . . , n.

(1) ⇒ (2). Assume (1), so p(x) ≥ 0 for all x ∈ Rn. Taking

x ∶= ((
αi
βi

)
1/2d, . . . , (

αn
βn

)
1/2d

),

we see that

p(x) =
n

∑
i=1

αi − µ
n

∏
i=1

(
αi
βi

)
αi/2d = 2d − µ

n

∏
i=1

(
αi
βi

)
αi/2d ≥ 0,

so µ∏n
i=1(

αi
βi

)αi/2d ≤ 2d. This proves (2).

(2) ⇒ (3). Make a change of variables Xi = (
αi
βi

)1/2dYi, i = 1, . . . n. Let µ1 ∶=

µ∏n
i=1(

αi
βi

)αi/2d so, by (2), µ1 ≤ 2d, i.e., 2d
µ1

≥ 1. Then

p(X) =
n

∑
i=1

αiY
2d
i − µ1Y

α
=
µ1

2d
[
n

∑
i=1

αiY
2d
i (

2d

µ1
− 1) +

n

∑
i=1

αiY
2d
i − 2dY α

],

which is SOBS, by the Hurwitz-Reznick result. This proves (3).

Next, we prove our main new result of this section, which gives a sufficient condition

on the coefficients for a polynomial to be a sum of squares.

Theorem 3.1.3. Suppose f is a form of degree 2d. A sufficient condition for f to be

SOBS is that there exist nonnegative real numbers aα,i for α ∈ ∆, i = 1, . . . , n such that

1. ∀α ∈ ∆ (2d)2daαα = f
2d
α α

α.

2. f2d,i ≥ ∑α∈∆ aα,i, i = 1, . . . , n.
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Here, aα ∶= (aα,1, . . . , aα,n).

Proof. Suppose that such real numbers exist. Then condition (1) together with Corollary

3.1.2 implies that ∑ni=1 aα,iX
2d
i + fαX

α is SOBS for each α ∈ ∆, so

n

∑
i=1

(∑
α∈∆

aα,i)X
2d
i + ∑

α∈∆
fαX

α

is SOBS. Combining with (2), it follows that ∑ni=1 f2d,iX
2d
i + ∑α∈∆ fαX

α is SOBS. Since

each fαX
α for α ∈ Ω ∖∆ is a square, this implies f(X) is SOBS.

Remark 3.1.4.

1. From condition (1) of Theorem 3.1.3 we see that aα,i = 0 ⇒ αi = 0.

2. Let a be an array of real numbers satisfying the conditions of Theorem 3.1.3, and

define the array a∗ = (a∗α,i) by

a∗α,i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

aα,i if αi ≠ 0

0 if αi = 0.

Then a∗ also satisfies the conditions of Theorem 3.1.3. Thus we are free to require

the converse condition αi = 0 ⇒ aα,i = 0 too, if we want.

We mention some corollaries of Theorem 3.1.3. Corollaries 3.1.5 and 3.1.6 were known

earlier. Corollary 3.1.7 is an improved version of Corollary 3.1.6. Corollary 3.1.9 is a new

result.

Corollary 3.1.5. For any polynomial f ∈ R[X] of degree 2d, if

(L1) f0 ≥ ∑
α∈∆

∣fα∣
2d−∣α∣

2d and (L2) f2d,i ≥ ∑
α∈∆

∣fα∣
αi
2d , i = 1, . . . , n,

then f is a sum of squares.

Proof. (See [36, Theorem 3] and [17, Theorem 2.2].) Apply Theorem 3.1.3 to the homog-

enization f̄(X,Y ) of f , taking aα,i = ∣fα∣
αi
2d , i = 1, . . . , n and aα,Y = ∣fα∣

2d−∣αi∣
2d for each

α ∈ ∆. For α ∈ ∆,

(2d)2daαα = (2d)2d (
∣fα∣(2d−∣α∣)

2d )
2d−∣α∣

∏
n
i=1 (

∣fα∣αi
2d )

αi

= (2d)2d∣fα∣
2d−∣α∣(2d − ∣α∣)2d−∣α∣∣fα∣∣α∣αα(2d)−2d

= ∣fα∣
2dαα(2d − ∣α∣)2d−∣α∣.

So, 3.1.3(1) holds. (L1) and (L2) imply 3.1.3(2), therefore, by Theorem 3.1.3, f̄ and hence

f is SOBS.
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Corollary 3.1.6. Suppose f ∈ R[X] is a form of degree 2d and

min
i=1,...,n

f2d,i ≥
1

2d
∑
α∈∆

∣fα∣(α
α
)

1
2d .

Then f is SOBS.

Proof. (See [15, Theorem 4.3] and [17, Theorem 2.3].) Apply Theorem 3.1.3 with aα,i =

∣fα∣
αα/2d

2d , ∀α ∈ ∆, i = 1 . . . , n.

Corollary 3.1.7. Suppose f is a form of degree 2d, f2d,i > 0, i = 1, . . . , n and

∑
α∈∆

∣fα∣α
α/2d

2d∏n
i=1 f

αi/2d
2d,i

≤ 1.

Then f is SOBS.

Proof. Applying Theorem 3.1.3 with aα,i =
∣fα∣αα/2df2d,i
2d∏nj=1 f

αj/2d
2d,j

, we have we have

2d ∏
αi≠0

(
aα,i

αi
)
αi/2d

= 2d ∏
αi≠0

⎛
⎜
⎝

∣fα∣f2d,iα
α/2d

αi2d∏
n
j=1 f

αj/2d
2d,j

⎞
⎟
⎠

αi/2d

= ∣fα∣ ∏
αi≠0

⎛
⎜
⎜
⎝

f
αi/2d
2d,i ααiα/2d

ααii ∏
n
j=1 f

α2
j /2d

2d,j

⎞
⎟
⎟
⎠

1/2d

=
∣fα∣

∏
n
j=1 f

αj/2d
2d,j

∏
αi≠0

f
αi/2d
2d,i

= ∣fα∣.

Now, by 3.1.3 the conclusion follows.

Remark 3.1.8. Corollary 3.1.7 is an improved version of Corollary 3.1.6. This requires

some explanation. Suppose that f2d,i ≥ 1
2d ∑α∈∆ ∣fα∣α

α/2d, i = 1, . . . , n. Let f2d,i0 ∶=

min{f2d,i ∶ i = 1, . . . , n}. Then

n

∏
i=1

f
αi/2d
2d,i ≥

n

∏
i=1

f
αi/2d
2d,i0

= f2d,i0 ,

and

∑
α∈∆

∣fα∣α
α/2d

2d∏n
i=1 f

αi/2d
2d,i

=
1

2d
∑
α∈∆

∣fα∣α
α/2d

f2d,i0

f2d,i0

∏
n
i=1 f

αi/2d
2d,i

≤
1

2d
∑
α∈∆

∣fα∣α
α/2d

f2d,i0

≤ 1.
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We note yet another sufficient condition for SOSness.

Corollary 3.1.9. Let f ∈ R[X] be a form of degree 2d. If

f2d,i ≥ ∑
α∈∆,αi≠0

αi (
∣fα∣

2d
)

2d/αinα
, i = 1, . . . , n

then f is SOBS. Here nα ∶= ∣{i ∶ αi ≠ 0}∣.

Proof. Defining

aα,i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αi (
∣fα∣
2d )

2d/αinα
if αi ≠ 0

0 if αi = 0.

we have

2d ∏
αi≠0

(
aα,i

αi
)
αi/2d

= 2d ∏
αi≠0

⎡
⎢
⎢
⎢
⎢
⎣

(
∣fα∣

2d
)

2d/nααi⎤⎥
⎥
⎥
⎥
⎦

αi/2d

= 2d ∏
αi≠0

(
∣fα∣

2d
)

1/nα

= ∣fα∣.

Now, Applying Theorem 3.1.3, the conclusion holds.

The following example shows that the above corollaries are not as strong, either indi-

vidually or collectively, as Theorem 3.1.3 itself.

Example 3.1.10. Let f(X,Y,Z) =X6 + Y 6 +Z6 − 5X − 4Y −Z + 8. Corollary 3.1.5 does

not apply to f , actually (L1) fails. Also, Corollaries 3.1.6, 3.1.7 and 3.1.9 do not apply

to f̄ , the homogenization of f . We try to apply Theorem 3.1.3. Let α1 = (1,0,0,5),

α2 = (0,1,0,5) and α3 = (0,0,1,5), then ∆ = {α1, α2, α3}. Denote aαi,j by aij , we have to

find positive reals a11, a22, a33, a14, a24, a34 such that the following conditions hold:

66a11a
5
14 = 5655, 1 ≥ a11,

66a22a
5
24 = 4655, 1 ≥ a22,

66a33a
5
34 = 55, 1 ≥ a33,

8 ≥ a14 + a24 + a34.

Take a11 = a22 = a33 = 1 and solve equations on above set of conditions, we get a14 + a24 +

a34 ≈ 7.674 < 8. This implies that f̄ and hence f is SOBS.
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3.1.1 Application to PSD linear functionals

As another application of the Hurwitz-Reznick Theorem, we prove that the moments of a

PSD linear functional on R[X]2d are bounded by the maximum of the moments of 1 and

X2d
i , i = 1, . . . , n. Here, R[X]k denotes the vector space consisting of polynomials in R[X]

of degree ≤ k. This gives an improvement and simpler proof for the series of lemmas in

[39, Section 4].

Corollary 3.1.11. Suppose L ∶ R[X]2d Ð→ R is linear and L(p2) ≥ 0 ∀ p ∈ R[X]d. Then

∣L(Xα)∣ ≤ max{L(1), L(X2d
i ) ∶ i = 1, . . . , n}, for all α ∈ Nn, ∣α∣ ≤ 2d.

Proof. Suppose α = (α1,⋯, αn), and let c = max{L(1), L(X2d
i ) ∶ i = 1, . . . , n}. Let

f(X) = ∑
n
i=1 αiX

2d
i + (2d − ∣α∣) − 2dXα and let

f̄(X,Y ) =
n

∑
i=1

αiX
2d
i + (2d − ∣α∣)Y 2d

− 2dXαY 2d−∣α∣,

the homogenization of f(X). By Theorem 3.1.1, f̄ is SOBS. Hence f is SOBS, so L(f) ≥ 0.

Note that

0 ≤ L(f)

= L(∑ni=1 αiX
2d
i + (2d − ∣α∣) − 2dXα)

= ∑
n
i=1 αiL(X

2d
i ) + (2d − ∣α∣)L(1) − 2dL(Xα)

≤ ∑
n
i=1 αic + (2d − ∣α∣)c − 2dL(Xα)

= 2dc − 2dL(Xα).

So, L(Xα) ≤ c. If α = 2β for some β ∈ Nn then Xα = (Xβ)2, so L(Xα) ≥ 0 and ∣L(Xα)∣ ≤ c.

Otherwise, αi is odd for some 1 ≤ i ≤ n. In this case, applying the above argument, with

f replaced by f̂(X) = f(X1,⋯,−Xi,⋯,Xn), we see that ∣L(Xα)∣ ≤ c for each α with

∣α∣ ≤ 2d.

3.2 Application to global optimization

Let f ∈ R[X] be a non-constant polynomial of degree 2d. Recall that fsos denotes the

supremum of all real numbers r such that f − r ∈ ∑R[X]2, f∗ denotes the infimum of the

set {f(a) ∶ a ∈ Rn}, and fsos ≤ f∗.

Suppose f denotes the array of coefficients of non-constant terms of f and f0 denotes

the constant term of f . Suppose Φ(f, f0) is a formula in terms of coefficients of f such
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that Φ(f, f0) implies f is SOS. For such a criterion Φ, we have

∀r (Φ(f, f0 − r) → r ≤ fsos),

so fΦ ∶= sup{r ∈ R ∶ Φ(f, f0 − r)} is a lower bound for fsos and, consequently, for f∗. In

this section we develop this idea, using Theorem 3.1.3, to find a new lower bound for f .

Theorem 3.2.1. Let f be a non-constant polynomial of degree 2d and r ∈ R. Suppose

there exist nonnegative real numbers aα,i, α ∈ ∆, i = 1, . . . , n, aα,i = 0 if and only if αi = 0,

such that

1. (2d)2daαα = ∣fα∣
2dαα for each α ∈ ∆ such that ∣α∣ = 2d,

2. f2d,i ≥ ∑α∈∆ aα,i for i = 1, . . . , n, and

3. f0 − r ≥ ∑α∈∆<2d(2d − ∣α∣) [
∣fα∣2dαα
(2d)2daαα

]

1
2d−∣α∣

.

Then f − r is SOBS. Here ∆<2d ∶= {α ∈ ∆ ∶ ∣α∣ < 2d}.

Proof. Apply Theorem 3.1.3 to g ∶= f − r, the homogenization of f − r. Since f = f0 +

∑
n
i=1 f2d,iX

2d
i +∑α∈Ω fαX

α, it follows that g = (f0 − r)Y
2d +∑

n
i=1X

2d
i +∑α∈Ω fαX

αY 2d−∣α∣.

We know f −r is SOBS if and only if g is SOBS. The sufficient condition for g to be SOBS

given by Theorem 3.1.3 is that there exist nonnegative real numbers aα,i and aα,Y , aα,i = 0

if and only if αi = 0, aα,Y = 0 if and only if ∣α∣ = 2d such that

(1)′ ∀ α ∈ ∆ (2d)2daααa
2d−∣α∣
α,Y = ∣fα∣

2dαα(2d − ∣α∣)2d−∣α∣, and

(2)′ f2d,i ≥ ∑α∈∆ aα,i, i = 1, . . . , n and f0 − r ≥ ∑α∈∆ aα,Y .

Solving (1)′ for aα,Y yields

aα,Y = (2d − ∣α∣) [
∣fα∣

2dαα

(2d)2daαα
]

1
2d−∣α∣

,

if ∣α∣ < 2d. Take aα,Y = 0 if ∣α∣ = 2d. Conversely, defining aα,Y in this way, for each α ∈ ∆,

it is easy to see that (1), (2), and (3) imply (1)′ and (2)′.

Definition 3.2.2. For a non-constant polynomial f of degree 2d we define

fgp ∶= sup{r ∈ R ∶ ∃aα,i ∈ R+, α ∈ ∆, i = 1, . . . , n, aα,i = 0 if and only if αi = 0

satisfying conditions (1), (2) and (3) of Theorem 3.2.1}.
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It follows, as a consequence of Theorem 3.2.1, that fgp ≤ fsos.

Example 3.2.3. Let f(X,Y ) = X4 + Y 4 −X2Y 2 +X + Y . Here, ∆ = {α1, α2, α3}, where

α1 = (1,0), α2 = (0,1) and α3 = (2,2). We are looking for nonnegative reals ai,j , i = 1,2,3,

j = 1,2 satisfying a11 + a21 + a31 ≤ 1, a12 + a22 + a32 ≤ 1, a31a32 = 1
4 . Taking a11 = a22 =

a31 = a32 = 1
2 , a12 = a21 = 0, we see that fgp ≥ − 3

24/3
. Taking X = Y = − 1

21/3
we see that

f∗ ≤ f(−
1

21/3
,− 1

21/3
) = − 3

24/3
. Since fgp ≤ fsos ≤ f∗, it follows that fgp = fsos = f∗ = −

3
24/3

.

Remark 3.2.4. If ∣Ω∣ = 1 then f∗ = fsos = fgp.

Proof. Say Ω = {α}, so f = ∑
n
i=0 f2d,iX

2d
i +f0+fαX

α. We know fgp ≤ fsos ≤ f∗, so it suffices

to show that, for each real number r, f∗ ≥ r ⇒ fgp ≥ r. Fix r and assume f∗ ≥ r. We want

to show fgp ≥ r, i.e., that r satisfies the constrains of Theorem 3.2.1. Let g denote the

homogenization of f −r, i.e., g = ∑ni=1 f2d,iX
2d
i +(f0−r)Y

2d+fαX
αY 2d−∣α∣. Thus g is PSD.

This implies, in particular, that f2d,i ≥ 0, i = 1, . . . , n and f0 ≥ r. There are two cases to

consider.

Case 1. Suppose fα > 0 and all αi are even. Then α ∉ ∆, so ∆ = ∅. In this case r

satisfies trivially the constraints of Theorem 3.2.1, so fgp ≥ r.

Case 2. Suppose either fα < 0 or not all of the αi are even. Then α ∈ ∆, i.e.,

∆ = Ω = {α}. In this case, applying Corollary 3.1.2, we deduce that

f2d
α α

α
(2d − ∣α∣)2d−∣α∣

≤ (2d)2d
n

∏
i=1

fαi2d,i(f0 − r)
2d−∣α∣. (3.2.1)

There are two subcases to consider. If ∣α∣ < 2d then r satisfies the constraints of Theorem

3.2.1, taking

aα,i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f2d,i if αi ≠ 0

0 if αi = 0.

If ∣α∣ = 2d then (3.2.1) reduces to f2d
α α

α ≤ (2d)2d
∏
n
i=1 f

αi
2d,i. In this case, r satisfies the

constraints of Theorem 3.2.1, taking

aα,i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sf2d,i if αi ≠ 0

0 if αi = 0.

where

s =
⎡
⎢
⎢
⎢
⎣

∣fα∣
2dαα

(2d)2d∏
n
i=1 f

αi
2d,i

⎤
⎥
⎥
⎥
⎦

1
∣α∣

.
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If f2d,i > 0, i = 1, . . . , n then computation of fgp is a geometric programming problem.

We explain this now.

Definition 3.2.5. (geometric program)

(1) A function φ ∶ Rn>0 → R of the form

φ(x) = cxa11 ⋯xann ,

where c > 0, ai ∈ R and x = (x1, . . . , xn) is called a monomial function. A sum of monomial

functions, i.e., a function of the form

φ(x) =
k

∑
i=1

cix
a1i
1 ⋯xanin

where ci > 0 for i = 1, . . . , k, is called a posynomial function.

(2) An optimization problem of the form

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Minimize φ0(x)

Subject to φi(x) ≤ 1, i = 1, . . . ,m and ψi(x) = 1, i = 1, . . . , p

where φ0, . . . , φm are posynomials and ψ1, . . . , ψp are monomial functions, is called a geo-

metric program.

See [11, Section 4.5] or [48, Section 5.3] for detail on geometric programs.

Corollary 3.2.6. Let f be a non-constant polynomial of degree 2d with f2d,i > 0, i =

1, . . . , n. Then fgp = f0 −m
∗ where m∗ is the output of the geometric program

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Minimize ∑α∈∆<2d(2d − ∣α∣) [(fα2d)
2d
ααa−αα ]

1
2d−∣α∣

Subject to ∑α∈∆
aα,i
f2d,i

≤ 1, i = 1,⋯, n and
(2d)2daαα
∣fα∣2dαα = 1, α ∈ ∆, ∣α∣ = 2d.

The variables in the program are the aα,i, α ∈ ∆, i = 1, . . . , n, αi ≠ 0, the understanding

being that aα,i = 0 if and only if αi = 0.

Proof. fgp = f0 −m
∗ is immediate from the definition of fgp. Observe that

φ0(a) ∶= ∑
α∈∆,∣α∣<2d

(2d − ∣α∣) [(
fα
2d

)

2d

ααa−αα ]

1
2d−∣α∣

and φi(a) ∶= ∑α∈∆
aα,i
f2d,i

, i = 1, . . . , n are posynomials in the variables aα,i, and ψα(a) ∶=

(2d)2daαα
∣fα∣2dαα , α ∈ ∆, ∣α∣ = 2d are monomial functions in the variables aα,i.
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Remark 3.2.7. If either f2d,i < 0 for some i or f2d,i = 0 and αi ≠ 0 for some i and some

α then fgp = −∞. In all remaining cases, after deleting the columns of the array (aα,i)

corresponding to the indices i such that f2d,i = 0, we are reduced to the case where f2d,i > 0

for all i, i.e., we can apply geometric programming to compute fgp.

A special case occurs when f2d,i > 0, for i = 1, . . . , n and {α ∈ ∆ ∶ ∣α∣ = 2d} = ∅. In this

case, the equality constraints in the computation of m∗ are vacuous and the feasibility set

is always non-empty, so fgp ≠ −∞.

Corollary 3.2.8. If ∣α∣ < 2d for each α ∈ ∆ and f2d,i > 0 for i = 1, . . . , n, then fgp ≠ −∞

and fgp = f0 −m
∗ where m∗ is the output of the geometric program

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Minimize ∑α∈∆(2d − ∣α∣) [(fα2d)
2d
ααa−αα ]

1
2d−∣α∣

Subject to ∑α∈∆ aα,i ≤ f2d,i, i = 1,⋯, n.

Proof. Immediate from Corollary 3.2.6.

Example 3.2.9.

1. Let f be the polynomial of Example 3.1.10. Then fgp = fsos = f∗ ≈ 0.3265.

2. For g(X,Y,Z) =X6 +Y 6 +Z6 +X2Y Z2 −X4 −Y 4 −Z4 −Y Z3 −XY 2 + 2, g∗ ≈ 0.667,

and ggp = gsos ≈ −1.6728.

3. For h(X,Y,Z) = g(X,Y,Z) + X2, we have hgp ≈ −1.6728 < hsos ≈ −0.5028 and

h∗ ≈ 0.839.

To compare the running time efficiency of computation of fsos using SDP with compu-

tation of fgp using geometric programming, we set up a test to keep track of the running

times. All the polynomials were taken randomly of the form X2d
1 +⋯+X2d

n + g(X) where

g ∈ R[X] is of degree ≤ 2d−1. In each case the computation is done for 50 polynomial (for

the case n = 6, 2d = 12 the algorithm we used to generate random coefficients was taking

too long to run, so we used just 10 polynomials instead of 50) with coefficients uniformly

distributed in the interval [−10,10], using SosTools and GPposy for Matlab. The

result is shown in Tables 3.1 and 3.2 1.

1Hardware and Software specifications. Processor: Intel® Core™2 Duo CPU P8400 @ 2.26GHz,
Memory: 2 GB, OS: Ubuntu 11.10-32 bit, Matlab: 7.9.0.529 (R2009b), Sage: 4.6.2
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Although, sometimes there is a large gap between fsos and fgp, the running time tables

show that computation of fgp is much faster than fsos.

Table 3.1: Average, Minimum and Maximum of fsos − fgp

n 2d 4 6 8 10 12

3

avg 12.4 82.6 204.7 592 1096.3

min 0 23.5 109.5 311.2 808.6

max 27.1 141.6 334.5 851.5 1492.8

4

avg 27.5 205.5 730.9 2663.0 6206.1

min 6.9 100.8 298.3 2098.1 5003.9

max 51.1 333.1 1044.7 3254.9 7306.3

5

avg 47.9 539.0 2369.0 9599.7 -

min 19.9 336.6 1823.8 8001.0 -

max 100.2 763.9 2942.2 11129.7 -

6

avg 84.4 1125.9 5963.1 - -

min 36.1 780.3 4637.3 - -

max 146.3 1424.1 7421.3 - -

Table 3.2: Average running time (seconds)

n 2d 4 6 8 10 12

3
fgp 0.08 0.09 0.11 0.23 0.33

fsos 0.73 1.00 1.64 2.81 6.27

4
fgp 0.09 0.13 0.27 0.78 2.16

fsos 0.96 1.76 5.6 26.14 176.45

5
fgp 0.10 0.23 0.76 3.44 15.41

fsos 1.42 4.13 45.18 673.63 -

6
fgp 0.11 0.35 2.17 16.54 105.5

fsos 1.56 13.31 574.9 - -

Example 3.2.10. Let f(X,Y,Z) =X40 + Y 40 +Z40 −XY Z. According to Remark 3.2.4,

f∗ = fsos = fgp. The running time for computing fgp ≈ −0.686 using geometric programming
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was 0.18 seconds, but when we attempted to compute fsos directly, using SDP, the machine

ran out of memory and halted, after about 4 hours.

Table 3.3 shows the running time for computation of fgp for larger values of n and 2d

in cases where ∣Ω∣ is relatively small. This computation was done in Sage [60] using the

CvxOpt package, on the same computer, for one (randomly chosen) polynomial in each

case.

Table 3.3: Computation time for fgp (seconds) for various sizes of Ω

n 2d/∣Ω∣ 10 20 30 40 50 60 70 80 90 100

10

20 0.24 1.4 2.9 10.8 13 31.8 45.6 67.7 121 152

40 0.28 1.5 4.3 14.8 29 43.5 70.3 133 170 220

60 0.42 1.6 5.8 15 26 53.5 86.4 129 180 343

20

20 0.69 6.1 13.1 36 71.3 151 180 348 432 659

40 1.0 7.4 33.6 78.1 154 255 512 749 1033 1461

60 1.4 12.1 41.3 104 205 451 778 1101 1551 2130

30
20 1.5 9.1 37.6 80.6 153.4 290 462 717 984 1491

40 4.4 31.3 82.1 175 416 683 1286 2024 3015 3999

3.3 Explicit lower bounds

We explain how the lower bounds for f established in [17, Section 3] can be obtained by

evaluating the objective function of the geometric program in Corollary 3.2.8 at suitably

chosen feasible points.

Recall that for a (univariate) polynomial of the form p(t) = tn −∑n−1
i=0 ait

i, where each

ai is nonnegative and at least one ai is nonzero, C(p) denotes the unique positive root of p

[49, Theorem 1.1.3]. See [13], [31, Ex. 4.6.2: 20] or [17, Proposition 1.2] for more details.

Corollary 3.3.1. If ∣α∣ < 2d for each α ∈ ∆ and f2d,i > 0 for i = 1, . . . , n, then fgp ≥ rL,

where

rL ∶= f0 −
1
2d ∑α∈∆(2d − ∣α∣)∣fα∣k

∣α∣(f−α2d )
1
2d

k ≥ max
i=1,⋯,n

C(t2d − 1
2d ∑α∈∆ αi∣fα∣f

− ∣α∣
2d

2d,i t
∣α∣).

Here, f−α2d ∶= ∏
n
i=1 f

−αi
2d,i .
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Proof. For each α ∈ ∆ and i = 1,⋯, n. Let

aα,i =
αi

2dk2d−∣α∣ ∣fα∣(f2d,i)
1− ∣α∣

2d .

By definition of k, for each i, 1
2d ∑α∈∆ αi∣fα∣(f2d,i)

− ∣α∣
2d k∣α∣ ≤ k2d, hence

∑
α∈∆

aα,i = ∑
α∈∆

αi

2dk2d−∣α∣ ∣fα∣(f2d,i)
1− ∣α∣

2d ≤ f2d,i.

This shows that the array (aα,i ∶ α ∈ ∆, i = 1,⋯, n) is a feasible point for the geometric

program in the statement of Corollary 3.2.8. Plugging this into the objective function of

the program yields

∑α∈∆(2d − ∣α∣) [(fα2d)
2d
∏αi≠0 (

αi
aα,i

)
αi
]

1
2d−∣α∣

= ∑α∈∆(2d − ∣α∣) [(fα2d)
2d
∏αi≠0 (

2dαi
αi∣fα∣k∣α∣−2d

(f2d,i)
∣α∣
2d
−1)

αi

]

1
2d−∣α∣

= ∑α∈∆(2d − ∣α∣) [(fα2d)
2d
∏αi≠0 (

2d
∣fα∣k

2d−∣α∣(f2d,i)
∣α∣−2d

2d )
αi

]

1
2d−∣α∣

= 1
2d ∑α∈∆(2d − ∣α∣)∣fα∣k

∣α∣(f−α2d )
1
2d ,

so rL = f0 −
1
2d ∑α∈∆(2d − ∣α∣)∣fα∣k

∣α∣(f−α2d )
1
2d ≤ fgp.

Corollary 3.3.2. If ∣α∣ < 2d for each α ∈ ∆ and f2d,i > 0 for i = 1, . . . , n, then fgp ≥ rFK ,

where rFK ∶= f0 − k
2d, k ≥ C(t2d −∑2d−1

i=1 bit
i),

bi ∶=
1

2d
(2d − i)

2d−i
2d ∑

α∈∆,∣α∣=i
∣fα∣(α

αf−α2d )
1
2d , i = 1, . . . ,2d − 1.

Proof. Define

aα,i ∶= (2d − ∣α∣)
2d−∣α∣

2d
∣fα∣

2d
(ααf−α2d )

1/2df2d,ik
∣α∣−2d.

Note that ∑2d−1
i=1 bik

i ≤ k2d and, for each i = 1, . . . , n,

∑
α∈∆

aα,i = ∑
α∈∆

(2d − ∣α∣)
2d−∣α∣

2d
∣fα∣

2d
(ααf−α2d )

1
2d f2d,ik

∣α∣−2d

=
2d−1

∑
j=1

∑
α∈∆,∣α∣=j

(2d − j)
2d−j
2d

∣fα∣

2d
(ααf−α2d )

1
2d f2d,ik

j−2d

= f2d,i

2d−1

∑
j=1

1

2d
k−2dkj(2d − j)

2d−j
2d ∑

α∈∆,∣α∣=j
∣fα∣(α

αf−α2d )
1
2d

= f2d,ik
−2d

2d−1

∑
j=1

bjk
j

≤ f2d,i.
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Hence, (aα,i ∶ α ∈ ∆, i = 1,⋯, n) belongs to the feasible set of the geometric program in

Corollary 3.2.8. Plugging into the objective function, one sees after some effort that

∑
α∈∆

(2d − ∣α∣) [(
fα
2d

)

2d

ααa−αα ]

1
2d−∣α∣

=
2d−1

∑
j=1

bjk
j
≤ kn,

so rFK ≤ fsos.

Corollary 3.3.3. If ∣α∣ < 2d for each α ∈ ∆ and f2d,i > 0 for i = 1, . . . , n, then

fgp ≥ rdmt ∶= f0 − ∑
α∈∆

(2d − ∣α∣) [(
fα
2d

)

2d

t∣α∣ααf−α2d ]

1
2d−∣α∣

,

where t ∶= ∣∆∣.

Proof. Take aα,i =
f2d,i
t and apply Corollary 3.2.8.

Let C be a cone in a finite dimensional real vector space V . Let C○ denote the

interior of C. If a ∈ C○ and b ∈ V then b ∈ C○ if and only if b − εa ∈ C for some real

ε > 0 (See [44, Lemma 6.1.3] or [17, Remark 2.6]). Since ∑ni=1X
2d
i ∈ Σ○

2d,n [17, Corollary

2.5], for a polynomial f of degree 2d, with f2d ∈ Σ○
2d,n, there exists an ε > 0 such that

g = f2d − ε(∑
n
i=1X

2d
i ) ∈ Σ2d,n. The hypothesis of Corollary 3.2.8 holds for f − g. In this

way, corollaries 3.2.8, 3.3.1, 3.3.2 and 3.3.3, provide lower bounds for fsos. Moreover, the

lower bounds obtained in this way, using corollaries 3.3.1, 3.3.2 and 3.3.3, are exactly the

lower bounds obtained in [17]. Here we give some approximation for ε.

Corollary 3.3.4. If f is a form of degree 2d and ε ∶= max{ε1, ε2} > 0 where

ε1 ∶= min
i=1,...,n

(f2d,i − ∑
α∈∆

∣fα∣
αi
2d

), ε2 ∶= min
i=1,...,n

f2d,i −
1

2d
∑
α∈∆

∣fα∣(α
α
)

1
2d ,

then f ∈ Σ○
2d,n and f − ε∑ni=1X

2d
i ∈ Σ2d,n.

Proof. Applying Theorem 3.1.5 or Theorem 3.1.6 (depending on whether ε = ε1 or ε = ε2)

to the form f − ε∑ni=1X
2d
i , we see that f − ε∑ni=1X

2d
i is SOS.

Applying Corollary. 3.3.4 to the form f2d allows us to compute ε in certain cases: If

ε ∶= max{ε1, ε2} > 0 where

ε1 ∶= min
i=1,...,n

(f2d,i − ∑
α∈∆,∣α∣=2d

∣fα∣
αi
2d

), ε2 ∶= min
i=1,...,n

f2d,i −
1

2d
∑

α∈∆,∣α∣=2d

∣fα∣(α
α
)

1
2d ,
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then f2d ∈ Σ○
2d,n and f2d − ε∑

n
i=1X

2d
i ∈ Σ2d,n.

The bounds rL, rFK , rdmt provided by corollaries 3.3.1, 3.3.2 and 3.3.3 are typically

not as good as the bound fgp provided by Corollary 3.2.8 .

Example 3.3.5. (Compare to [17, Example 4.2])

(a) For f(X,Y ) =X6+Y 6+7XY −2X2+7, we have rL ≈ −1.124, rFK ≈ −0.99, rdmt ≈ −1.67

and fsos = fgp ≈ −0.4464, so fgp > rFK > rL > rdmt.

(b) For f(X,Y ) = X6 + Y 6 + 4XY + 10Y + 13, rL ≈ −0.81, rFK ≈ −0.93, rdmt ≈ −0.69 and

fgp ≈ 0.15 ≈ fsos, so fgp > rdmt > rL > rFK .

(c) For f(X,Y ) =X4 + Y 4 +XY −X2 − Y 2 + 1, fsos = fgp = rL = −0.125, rFK ≈ −0.832 and

rdmt ≈ −0.875, so fgp = rL > rFK > rdmt.
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Chapter 4

Exponentially Bounded Functionals

As we mentioned earlier in Section 2.4, in [7] Berg, Christensen and Ressel prove that

the closure of the cone of sums of squares ∑R[X]2 in the polynomial ring R[X] in the

topology induced by the `1-norm is equal to Psd([−1,1]n). In this chapter, the result

is deduced as a corollary of a general result, also established in [7], which is valid for

any commutative semigroup. In later work Berg and Maserick [9] and Berg, Christensen

and Ressel [8] establish an even more general result, for a commutative semigroup with

involution, for the closure of the cone of sums of squares of symmetric elements in the

weighted `1-seminorm topology associated to an absolute value. In this chapter, we give

a new proof of these results which is based on Jacobi’s Representation Theorem [27]. At

the same time, we use Jacobi’s theorem to extend these results from sums of squares to

sums of 2d-powers.

4.1 Exponentially Bounded Maps over Polynomials

For any function φ ∶ Nn Ð→ R+, we define

Kφ ∶= {x ∈ Rn ∶ ∀s ∈ Nn ∣xs∣ ≤ φ(s)}.

Fix an integer d ≥ 1. We denote by Mφ,2d the ∑R[X]2d-module of R[X] (Definition 1.3.1)

generated by the elements φ(s)±Xs, s ∈ Nn. Mφ,2d is archimedean. This is a consequence

of the fact that

∑
s

∣fs∣φ(s) + f = ∑
fs>0

∣fs∣(φ(s) +X
s
) + ∑

fs<0

∣fs∣(φ(s) −X
s
) ∈Mφ,2d,

for any f = ∑s fsX
s ∈ R[X]. Also, Kφ is the non-negativity set of Mφ,2d in Rn so, by

Jacobi’s theorem 1.3.11, any f ∈ R[X] strictly positive on Kφ belongs to Mφ,2d.
1

1If one insists on Kφ ≠ ∅ (equivalently, −1 ∉Mφ,2d) it is necessary to assume φ(0) ≥ 1.
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Definition 4.1.1. A function φ ∶ Nn Ð→ R+ is called an absolute value if

1. φ(0) ≥ 1,

2. φ(s + t) ≤ φ(s)φ(t) ∀s, t ∈ Nn.

Suppose now that φ is an absolute value. Denote by R⟦X⟧ the ring of formal power

series in X1, . . . ,Xn with coefficients in R. For f = ∑s fsX
s ∈ R⟦X⟧ define the φ-seminorm

of f to be ∥f∥φ ∶= ∑s ∣fs∣φ(s) and denote by R⟦X⟧φ the subset of R⟦X⟧ consisting of all

f ∈ R⟦X⟧ having finite φ-seminorm.

Lemma 4.1.2.

1. ∥f + g∥φ ≤ ∥f∥φ + ∥g∥φ,

2. ∥rf∥φ = ∣r∣∥f∥φ and,

3. ∥fg∥φ ≤ ∥f∥φ∥g∥φ.

Proof. (1) and (2) are trivial. To see (3) suppose that f = ∑s fsX
s and g = ∑t gtX

t are

given. Then fg = ∑s,t fsgtX
s+t and

∥f ⋅ g∥φ = ∥∑s,t fsgtX
s+t∥φ

= ∥∑u(∑s+t=u fsgt)X
u∥φ

= ∑u ∣∑s+t=u fsgt∣φ(u)

≤ ∑u(∑s+t=u ∣fsgt∣)φ(s + t)

≤ ∑s,t ∣fs∣ ⋅ ∣gt∣φ(s)φ(t)

= ∥f∥φ∥g∥φ.

Lemma 4.1.2 implies that R⟦X⟧φ is a subalgebra of the R-algebra R⟦X⟧. It is the

closure of R[X] in the topology induced by the φ-seminorm.

Lemma 4.1.3. Suppose r ∈ R, s ∈ Nn, r > φ(s). Then (r ±Xs)1/2d ∈ R⟦X⟧φ.

Proof. We may assume s ≠ 0. Denote by ∑∞
i=0 ait

i the power series expansion of f(t) =

(r ± t)1/2d about t = 0, i.e., ai =
f(i)(0)
i! . This has radius of convergence r so it converges

absolutely for ∣t∣ < r. In particular, it converges absolutely for t = φ(s), i.e., ∑∞
i=0 ∣ai∣φ(s)

i <

∞. Since φ(is) ≤ φ(s)i for i ≥ 1, this implies ∑∞
i=0 ∣ai∣φ(is) < ∞, i.e., (r ± Xs)1/2d =

∑
∞
i=0 aiX

is ∈ R⟦X⟧φ.
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An important example of an absolute value, perhaps the most important one, is the

constant function 1. If φ = 1 then Kφ = [−1,1]n and the φ-seminorm is the standard

`1-norm ∥f∥1 ∶= ∑s ∣fs∣.

Theorem 4.1.4. Suppose φ is an absolute value on Nn and f ∈ R[X], f > 0 on Kφ. Then

f ∈ ∑R⟦X⟧2d
φ .

Proof. For each real δ > 0 consider the function φ + δ ∶ Nn Ð→ R+ defined by

(φ + δ)(s) ∶= φ(s) + δ.

Since ⋂δ>0Kφ+δ = Kφ, each Kφ+δ is compact and for any f > 0 on Kφ, ∃δ > 0 such

that f > 0 on Kφ+δ. The ∑R[X]2d-module Mφ+δ,2d of R[X] generated by the elements

φ(s) + δ ±Xs, s ∈ Nn is archimedean. By Jacobi’s theorem 1.3.11, f ∈Mφ+δ,2d. By Lemma

4.1.3, (φ(s) + δ ±Xs)1/2d ∈ R⟦X⟧φ for each s ∈ Nn. Thus f ∈ ∑R⟦X⟧2d
φ .

Corollary 4.1.5. For any absolute value φ on Nn the closure of the cone ∑R[X]2d in

R[X] in the topology induced by the φ-seminorm (i.e., ∑R[X]2d
∥⋅∥φ

) is Psd(Kφ).

Proof. The inclusion (⊆) follows from continuity of the evaluation map f ↦ f(x), for

x ∈ Kφ, which follows in turn from the fact that ∣f(x)−g(x)∣ ≤ ∥f−g∥φ, for x ∈ Kφ. To prove

(⊇), suppose f ∈ R[X], f ≥ 0 on Kφ and ε > 0. Then f + ε
2 > 0 on Kφ so ∃f1, . . . , fm ∈ R⟦X⟧φ

such that f + ε
2 = f2d

1 + ⋅ ⋅ ⋅ + f2d
m , by Theorem 4.1.4. Take g = g2d

1 + ⋅ ⋅ ⋅ + g2d
m where gi ∈ R[X]

is such that ∥f2d
i − g2d

i ∥φ ≤
ε

2m , i = 1, . . . ,m. Then g ∈ ∑R[X]2d, ∥f − g∥φ ≤ ε.

Definition 4.1.6. A linear functional L ∶ R[X] Ð→ R is said to be exponentially bounded

if there exists an absolute value φ, and a constant C > 0 such that ∀s ∈ Nn ∣L(Xs)∣ ≤ Cφ(s).

Corollary 4.1.7. Suppose L ∶ R[X] Ð→ R is an exponentially bounded linear functional

with respect to an absolute value φ, such that for all p ∈ R[X], L(p2d) ≥ 0. Then there is

a unique positive Borel measure µ ∈ M+(Kφ) such that

L(f) = ∫Kφ
f dµ, ∀f ∈ R[X].

Proof. The hypothesis implies that ∣L(f) −L(g)∣ ≤ C∥f − g∥φ for some constant C > 0, so

L is ∥ ⋅ ∥φ-continuous. Fix f ∈ Psd(Kφ). Fix ε > 0. By Corollary 4.1.5, ∃g ∈ ∑R[X]2d such

that ∥f − g∥φ ≤ ε, so ∣L(f) − L(g)∣ ≤ Cε. Since L(g) ≥ 0, this implies L(f) ≥ −Cε. Since
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ε > 0 is arbitrary, this implies L(f) ≥ 0. The existence follows from Haviland’s Theorem

2.2.5. The uniqueness is a result of the fact that R[X] is dense in C(Kφ) and hence L

has a unique continuous extension to C(Kφ) by Hahn-Banach Theorem. Therefore by the

Riesz Representation Theorem 2.2.3 the representing measure is unique.

Remark 4.1.8.

1. In the case d = 1 Corollary 4.1.7 is well-known. It can be obtained by applying [8,

Theorem 4.2.5] to the semigroup (Nn,+) equipped with the identity involution; see

[39, Theorem 2.2]. At the same time, the proof given here is new, even in the case

d = 1.

2. The converse of Corollary 4.1.7 holds: If L(f) = ∫ f dµ where µ ∈ M+(Kφ) then

L(p2d) ≥ 0 for all p ∈ R[X] and ∣L(Xs)∣ ≤ Cφ(s) where C ∶= µ(Kφ). This is clear.

3. We have proved Corollary 4.1.7 from Corollary 4.1.5 using Theorem 2.2.5. One can

also prove Corollary 4.1.5 from Corollary 4.1.7 using Corollary 2.1.8. In this way,

Corollary 4.1.5 and Corollary 4.1.7 can be seen to carry exactly the same information.

4. Corollary 4.1.5 extends [7, Theorem 9.1].

5. In [39], Lasserre and Netzer use [8, Theorem 4.2.5] to prove that for φ equal to the

constant function 1 and for any f ∈ Psd(Kφ) and any real ε > 0, and any integer

k ≥ 1 sufficiently large (depending on ε and f),

f + ε(1 +
n

∑
i=1

X2k
i ) ∈ ∑R[X]

2.

It is not clear how to extend this result with ∑R[X]2 replaced by ∑R[X]2d.

4.2 Exponentially Bounded Maps over Semigrouprings

Our goal in this section is to extend Corollary 4.1.5 and Corollary 4.1.7 to arbitrary

commutative semigroups with involution; see Theorem 4.2.6 and Corollary 4.2.7.

As in [8, 9], we work with a commutative ∗-semigroup S = (S, ⋅,1,∗) with neutral

element 1 and involution ∗. The involution ∗ ∶ S Ð→ S satisfies

(st)∗ = s∗t∗, (s∗)∗ = s and 1∗ = 1.
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We denote by C[S] the semigroupring of S with coefficients in C. Elements of C[S] have

the form f = ∑s∈S fss (finite sum), fs ∈ C. C[S] has the structure of a C-algebra with

involution. Addition, scalar multiplication and multiplication are defined by

f + g = ∑(fs + gs)s, zf = ∑(zfs)s, fg = ∑
s,t

(fsgt)st = ∑
u

(∑
st=u

fsgt)u.

The involution is defined by

f∗ = ∑ fss
∗.

An element f ∈ C[S] is said to be symmetric if f∗ = f , i.e., if fs∗ = fs for all s ∈ S. We

denote the R-algebra consisting of all symmetric elements of C[S] by AS . Clearly

C[S] = AS ⊕ iAS .

As an R-vector space AS is generated by the elements s + s∗ and i(s − s∗), s ∈ S. If the

involution on S is the identity, i.e., s∗ = s for all s ∈ S, then AS = R[S], the semigroupring

of S with coefficients in R.

Definition 4.2.1. A semicharacter of S is a function α ∶ S Ð→ C satisfying

1. α(1) = 1;

2. ∀s, t ∈ S α(st) = α(s)α(t);

3. ∀s ∈ S α(s∗) = α(s).

We denote by Ŝ the set of all semicharacters of S. Semicharacters α of S correspond

bijectively to ∗-algebra homomorphisms α ∶ C[S] Ð→ C via α(f) ∶= ∑s∈S fsα(s). In turn,

∗-algebra homomorphisms α ∶ C[S] Ð→ C correspond bijectively to ring homomorphisms

α ∶ AS Ð→ R via α(f + gi) = α(f)+α(g)i. In this way, Ŝ and XAS are naturally identified.

For any function φ ∶ S Ð→ R+ define

Kφ ∶= {α ∈ Ŝ ∶ ∀s ∈ S ∣α(s)∣ ≤ φ(s)}.

Fix an integer d ≥ 1. Denote by Mφ,2d the ∑A2d
S -module of AS generated by the

elements

φ(s)2
− ss∗, 2φ(s) ± (s + s∗) and 2φ(s) ± i(s − s∗), s ∈ S.

The following holds for Mφ,2d:
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Lemma 4.2.2.

1. Mφ,2d is archimedean.

2. The non-negativity set of Mφ,2d in Ŝ is Kφ.

Proof. (1) The elements s + s∗, i(s − s∗) generate AS as an R-vector space and

2φ(s) ± (s + s∗), 2φ(s) ± i(s − s∗) ∈Mφ,2d,

so Mφ,2d is archimedean.

(2) For α ∈ Ŝ,

∣α(s)∣ ≤ φ(s) ⇔ α(s)α(s) ≤ φ(s)2
⇔ φ(s)2

− ss∗ ≥ 0 at α.

Also, using the inequality
√
a2 + b2 ≥ max{∣a∣, ∣b∣},

∣α(s)∣ ≤ φ(s) ⇒ ∣
α(s) + α(s)

2
∣ ≤ φ(s) ⇔ 2φ(s) ± (s + s∗) ≥ 0 at α,

and

∣α(s)∣ ≤ φ(s) ⇒ ∣
α(s) − α(s)

2i
∣ ≤ φ(s) ⇔ 2φ(s) ± i(s − s∗) ≥ 0 at α.

Definition 4.2.3. A function φ ∶ S Ð→ R+ is called an absolute value if

1. φ(1) ≥ 1;

2. ∀s, t ∈ S φ(st) ≤ φ(s)φ(t);

3. ∀s ∈ S φ(s∗) = φ(s).

A linear functional L ∶ C[S] Ð→ C is said to be exponentially bounded with respect to φ,

if ∀s ∈ S ∣L(s)∣ ≤ Cφ(s) for some C > 0.

Suppose that φ is an absolute value on S. For f = ∑s fss ∈ C[S] define the φ-seminorm

of f to be ∥f∥φ ∶= ∑s ∣fs∣φ(s).

Lemma 4.2.4.

1. ∥f + g∥φ ≤ ∥f∥φ + ∥g∥φ,
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2. ∥zf∥φ = ∣z∣∥f∥φ,

3. ∥fg∥φ ≤ ∥f∥φ∥g∥φ,

4. ∥f∗∥φ = ∥f∥φ.

So the addition, scalar multiplication, multiplication and conjugation in the semigroup

algebra C[S] are continuous in the topology induced by the φ-seminorm.

Lemma 4.2.5. Let r ∈ R, f ∈ AS, r > ∥f∥φ. Then, for each real ε > 0, there exists g ∈ AS

such that ∥(r + f) − g2d∥φ < ε.

Proof. Consider the R-algebra homomorphism τ ∶ R[X] Ð→ AS defined by X ↦ f and

consider the absolute value φ′ on (N,+) defined by φ′(i) = ∥f i∥φ. Applying Lemma 4.1.3

we see that (r +X)1/2d ∈ R⟦X⟧φ′ . Combining this with the density of R[X] in R⟦X⟧φ′

and the continuity of the multiplication in the topology induced by the φ′-seminorm, there

exists h ∈ R[X] such that ∥r+X−h2d∥φ′ < ε. Take g = τ(h). Since τ(r+X−h2d) = r+f−g2d

and ∥τ(p)∥φ ≤ ∥p∥φ′ , for all p ∈ R[X], this completes the proof.

Theorem 4.2.6. Suppose φ is an absolute value on a commutative semigroup S with

involution and d is any positive integer. Then ∑A2d
S

∥⋅∥φ
= Psd(Kφ) in AS.

Proof. Since ∑A2d
S ⊆ Psd(Kφ) and Psd(Kφ) is closed, one inclusion in clear. The fact that

Psd(Kφ) is closed comes from the fact that each α ∈ Kφ, viewed as a ring homomorphism

α ∶ AS Ð→ R in the standard way, satisfies ∣α(f)∣ ≤ ∥f∥φ for all f ∈ AS , so α is continuous

for each α ∈ Kφ, and Psd(Kφ) = ⋂α∈Kφ α
−1(R+).

For the other inclusion we must show if f ∈ Psd(Kφ) and ε > 0, there exists g ∈ ∑A2d
S

such that ∥f − g∥φ ≤ ε. Note that f + ε
2 is strictly positive at each α ∈ Kφ so, by Lemma

4.2.2 and Jacobi’s theorem 1.3.11,

f +
ε

2
=

k

∑
i=0

gimi

where gi ∈ ∑A
2d
S , i = 0, . . . , k, m0 = 1, andmi ∈ {φ(s)2−ss∗, 2φ(s)±(s+s∗), 2φ(s)±i(s−s∗) ∶

s ∈ S}, i = 1, . . . , k. Choose δ > 0 so that (∑
k
i=1 ∥gi∥φ)δ ≤ ε

2 . By Lemma, 4.2.5 there

exists hi ∈ AS such that ∥ δ2 + mi − h
2d
i ∥φ ≤ δ

2 , i.e., ∥mi − h
2d
i ∥φ ≤ δ, i = 1, . . . , k. Take

g = g0 +∑
k
i=1 gih

2d
i . Then g ∈ ∑A2d

S , and

∥f − g∥φ = ∥
k

∑
i=1

gimi −
k

∑
i=1

gih
2d
i −

ε

2
∥φ ≤

k

∑
i=1

∥gi∥φ∥mi − h
2d
i ∥φ +

ε

2
≤ ε.
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Corollary 4.2.7. Let S be a commutative semigroup with involution and let d be a positive

integer. Let L ∶ C[S] Ð→ C be an exponentially bounded ∗-linear mapping with respect to

an absolute value φ such that L(p2d) ≥ 0 for all p ∈ AS. Then

∃µ ∈ M+(Kφ)∀f ∈ C[S] L(f) = ∫Kφ
f̂ dµ.

Here, f̂ ∶ Ŝ Ð→ C is defined by f̂(α) ∶= α(f) for all α ∈ Ŝ, equivalently, if f = g + ih,

g, h ∈ AS , then f̂ ∶= ĝ + iĥ.

Proof. ∗-linear mappings L ∶ C[S] Ð→ C correspond bijectively to R-linear mappings

L ∶ AS Ð→ R, the correspondence being given by L(f +gi) = L(f)+L(g)i. The hypothesis

implies that ∣L(f)−L(g)∣ ≤ C∥f − g∥φ, so L is continuous. Fix f ∈ Psd(Kφ). Fix ε > 0. By

Theorem 4.2.6, ∃g ∈ ∑A2d
S such that ∥f − g∥φ ≤ ε, so ∣L(f) − L(g)∣ ≤ Cε. Since L(g) ≥ 0,

this implies L(f) ≥ −Cε. Since ε > 0 is arbitrary, this implies L(f) ≥ 0. The conclusion

follows, by Theorem 2.2.4.

Remark 4.2.8. For p ∈ C[S], p = q + ir, q, r ∈ AS , pp∗ = (q + ir)(q − ir) = q2 + r2. Thus,

for L ∶ C[S] Ð→ C, ∗-linear, L(p2) ≥ 0 for each p ∈ AS if and only if L(pp∗) ≥ 0 for

each p ∈ C[S] if and only if L is positive (semi)definite, terminology as in [7], [8] and [9].

Consequently, Corollary 4.2.7 generalizes and provides another proof of what is proved in

[7, Corollary 2.5] and [8, Theorem 4.2.5].

4.3 Berg-Maserick Result

In this section we relax the requirement that an absolute value satisfies φ(1) ≥ 1. If

φ(1) < 1 then, since φ(s) = φ(s1) ≤ φ(s)φ(1) for all s ∈ S, φ is identically zero. Then ∥ ⋅ ∥φ

is also identically zero, so the topology on C[S] is the trivial one and the closure of ∑A2d
S

in AS is AS . At the same time, Kφ = ∅ so Psd(Kφ) = AS . Consequently, Theorem 4.2.6

and Corollary 4.2.7 continue to hold in this more general situation.

We explain how the Berg-Maserick result [9, Theorem 2.1] can be deduced as a conse-

quence of Corollary 4.2.7. See Corollary 4.3.4.
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Definition 4.3.1. A weak absolute value on S is a function φ ∶ S Ð→ R+ satisfying

∀ s ∈ S φ(ss∗) ≤ φ(s)2.

Replacing s by s∗, we see that φ(ss∗) ≤ φ(s∗)2, so

∀s ∈ S φ(ss∗) ≤ min{φ(s)2, φ(s∗)2
},

for any weak absolute value φ on S.

For any weak absolute value φ on S, define φ′ ∶ S Ð→ R+ by

φ′(s) = inf{
k

∏
i=1

min{φ(si), φ(s
∗
i )} ∶ k ≥ 1, s1, . . . , sk ∈ S, s = s1 . . . sk}.

Lemma 4.3.2. Let φ be a weak absolute value on S. Then

1. φ′ is an absolute value (possibly φ′ ≡ 0).

2. If L ∶ C[S] Ð→ C is ∗-linear and positive semidefinite and there exists C > 0 such

that ∣L(s)∣ ≤ Cφ(s) holds for all s ∈ S, then ∀s ∈ S ∣L(s)∣ ≤ Cφ′(s).

3. Kφ = Kφ′.

Proof. (1) This is clear. (2) It suffices to show

∀s1, . . . , sk ∈ S ∣L(s1 . . . sk)∣ ≤ C
k

∏
i=1

min{φ(si), φ(s
∗
i )}.

Since ∣L(s)∣ ≤ Cφ(s) and ∣L(s)∣ = ∣L(s)∣ = ∣L(s∗)∣ ≤ Cφ(s∗), the result is clear when k = 1.

Suppose now that k ≥ 2. We make use of the Cauchy-Schwartz inequality for the inner

product

⟨f, g⟩ ∶= L(fg∗), f, g ∈ C[S].

This implies, in particular, that

∀s, t ∈ S ∣L(st∗)∣2 ≤ L(ss∗)L(tt∗).

Using this we obtain

∣L(s1 . . . sk)∣
2 ≤ L(s1s

∗
1)L(s2s

∗
2 . . . sks

∗
k)

≤ Cφ(s1s
∗
1)C∏

k
i=2 φ(sis

∗
i )

= C2
∏
k
i=1 φ(sis

∗
i )

≤ C2
∏
k
i=1 min{φ(si)

2, φ(s∗i )
2}
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(the second inequality by induction on k). The result follows, by taking square roots.

(3) Since φ′(s) ≤ φ(s) for all s ∈ S, the inclusion Kφ′ ⊆ Kφ is clear. For the other

inclusion, note that each α ∈ Ŝ is positive semidefinite, so Kφ ⊆ Kφ′ , by (2).

Corollary 4.3.3. Suppose φ is a weak absolute value on S. Then the closure of ∑A2
S in

AS in the topology induced by the φ-seminorm ∥f∥φ ∶= ∑ ∣fs∣φ(s) is equal to Psd(Kφ).

Proof. Denote the closure of ∑A2
S in AS in the topology induced by the φ-seminorm by

∑A2
S

∥⋅∥φ
. By Lemma 4.3.2(2), an R-linear map L ∶ AS Ð→ R non-negative on ∑A2

S is

continuous in the topology induced by ∥ ⋅ ∥φ if and only if it is continuous in the topology

induced by ∥ ⋅ ∥φ′ . It follows, using Corollary 2.1.8, that ∑A2
S

∥⋅∥φ
= ∑A2

S

∥⋅∥φ′
. By Lemma

4.3.2(3), Kφ = Kφ′ so Psd(Kφ) = Psd(Kφ′). The result follows now using Lemma 4.3.2(1)

and Theorem 4.2.6.

Corollary 4.3.4. Suppose L ∶ C[S] Ð→ C is ∗-linear and positive semidefinite and there

exists a weak absolute value φ on S and a constant C > 0 such that ∀s ∈ S ∣L(s)∣ ≤ Cφ(s).

Then there exists a unique positive Borel measure µ ∈ M+(Kφ) such that L(f) = ∫Kφ f̂ dµ

for each f ∈ C[S].

Proof. In view of Lemma 4.3.2, this is immediate from Corollary 4.2.7.

Since the argument in Lemma 4.3.2(2) makes essential use of the Cauchy-Schwartz

inequality, it seems unlikely that Corollaries 4.3.3 and 4.3.4 extend to the case d > 1.
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Chapter 5

Closures in Weighted `p-Norms

In this chapter, we compute the closure of the cone ∑R[X]2d in R[X] under certain

norm topologies, d ≥ 1. Results of this chapter are a slight generalization of results of [16].

We start by reviewing some basic facts about ∥ ⋅ ∥p-norms.

5.1 Norm-p topologies

Recall that a real n-sequence, is a function s ∶ Nn Ð→ R. Taking δα ∶ Nn Ð→ R for each

α ∈ Nn to be the map such that δα(β) = 1 if β = α and δα(β) = 0 otherwise, we can assume

that each s is equal to the formal sum s = ∑α∈Nn s(α)δα. Let 1 ≤ p < ∞, and define the

mapping

∥ ⋅ ∥p ∶ RNn
Ð→ R ∪ {∞}

for each n-sequence s, as follows:

∥s∥p = ( ∑
α∈Nn

∣s(α)∣p)
1
p = (

∞
∑
d=0

∑
∣α∣=d

∣s(α)∣p)
1
p .

For p = ∞, define

∥s∥∞ = sup
α∈Nn

∣s(α)∣.

For 1 ≤ p ≤ ∞, we let

`p(Nn) = {s ∈ RNn
∶ ∥s∥p < ∞},

and

c0(Nn) = {s ∈ RNn
∶ lim
α∈Nn

∣s(α)∣ = 0},

where limα∈Nn ∣s(α)∣ = 0 means

∀ε > 0 ∃N > 0 (∣α∣ > N ⇒ ∣s(α)∣ < ε).
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It is well-known that ∥ ⋅ ∥p is a norm on `p(Nn) and (`p(Nn), ∥ ⋅ ∥p) forms a Banach space.

Moreover, if 1 ≤ p < q ≤ ∞ then `p(Nn) ⊊ `q(Nn) and `p(Nn) ⊊ c0(Nn) ⊊ `∞(Nn). Let Vp

be the set of all finite support real n-sequences, equipped with ∥ ⋅ ∥p.

Remark 5.1.1. Fixing the monomial basis {Xα ∶ α ∈ Nn}, we can identify the space of

real polynomials R[X], endowed by ∥ ⋅ ∥p-norm, with Vp using the identification δα ↦Xα.

For 1 ≤ p ≤ ∞, define the conjugate q of p as follows:

• If p = 1, let q = ∞,

• If p = ∞, let q = 1,

• if 1 < p < ∞, let q be the real number satisfying 1
p +

1
q = 1.

Lemma 5.1.2 (Hölder’s inequality). Let 1 ≤ p ≤ ∞ and q be the conjugate of p. Let

a ∈ `p(Nn) and b ∈ `q(Nn). Then ab ∈ `1(Nn) and

∥a ⋅ b∥1 ≤ ∥a∥p∥b∥q,

where we define (ab)(α) ∶= a(α)b(α) for every α ∈ Nn.

Proof. See [11, Section 3.1.9] or [29, 2.10.6].

Proposition 5.1.3. Let 1 ≤ p ≤ ∞, then

1. For p ≠ ∞, Vp is a dense subspace of `p(Nn), and V∞ is dense in (c0(Nn), ∥ ⋅ ∥∞).

2. A linear functional L on Vp, p ≠ ∞, is continuous if and only if ∥(L(δα))α∈Nn∥q < ∞

where q is the conjugate of p.

Proof. (1) Take an element s ∈ `p(Nn), 1 ≤ p ≤ ∞ and for each k ≥ 1, let sk to be the

element of `p(Nn) defined by sk(α) = s(α) if ∣α∣ < k and sk(α) = 0 for ∣α∣ ≥ k. Take an

arbitrary ε > 0. For 1 ≤ p < ∞, since ∥s∥p < ∞, there exists N > 0 such that for k ≥ N ,

∑
∞
∣α∣=k ∣s(α)∣

p < εp. Therefore ∥s− sk∥p < ε for each k > N which proves the density of Vp in

`p(Nn) for 1 ≤ p < ∞. For p = ∞, by definition, there exists N > 0 such that ∣s(α)∣ < ε, for

∣α∣ > N . Hence, for every k > N , ∥s − sk∥∞ < ε. This completes the proof of (1).
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(2) Since Vp is dense in `p(Nn), every continuous linear functional L on Vp extends

continuously to `p(Nn) in a unique way. So V ∗
p corresponds bijectively with `p(Nn)∗.

Representing s ∈ `p(Nn), as s = ∑α∈Nn s(α)δα, we have

∣L(s)∣ = ∣∑α∈Nn s(α)L(δα)∣

(by Hölder’s inequality) ≤ ∥s∥p ⋅ ∥(L(δα))α∥q.

So, if (L(δα))α ∈ `q(Nn), then L ∈ `p(Nn)∗. This shows that `q(Nn) ⊆ `p(Nn)∗. It

remains to show that if L ∈ `p(Nn)∗ then (L(δα))α ∈ `q(Nn). Since L is continuous,

there exists c > 0 such that ∣L(s)∣ ≤ c ⋅ ∥s∥p. If p = 1 then ∣L(δα)∣ ≤ c ⋅ ∥δα∥p = c, so

(L(δα))α ∈ `∞(Nn). For 1 < p < ∞ let s(α) = L(δα)∣L(δα)∣
q−2 if L(δα) ≠ 0 and 0 otherwise.

Then ∣s(α)∣p = ∣L(δα)∣
q = s(α)L(δα) for each α ∈ Nn. Moreover for an integer d ≥ 1

∑∣α∣<d ∣L(δα)∣
q = ∑∣α∣<d s(α)L(δα)

= L(∑∣α∣<d s(α)δα)

≤ c ⋅ (∑∣α∣<d ∣s(α)∣
p)1/p

= c ⋅ (∑∣α∣<d ∣L(δα)∣
q)1/p.

Hence for each d ≥ 1

( ∑
∣α∣<d

∣L(δα)∣
q
)/( ∑

∣α∣<d
∣L(δα)∣

q
)

1/p
≤ c < ∞,

which as d → ∞, becomes ∥(L(δα))α∥
q
q/∥(L(δα))α∥

q/p
q = ∥(L(δα))α∥q ≤ c < ∞, implying

(L(δα))α ∈ `q(Nn) as desired.

Lemma 5.1.4. For 1 ≤ p ≤ q ≤ ∞, the identity map idpq ∶ Vp Ð→ Vq is continuous.

Proof. Let s ∈ Vp with ∥s∥p = 1, so ∣s(α)∣p ≤ 1 for α ∈ Nn, since 1 ≤ p ≤ q, ∣s(α)∣q ≤ ∣s(α)∣p

and hence

∑
α∈Nn

∣s(α)∣q ≤ ∑
α∈Nn

∣s(α)∣p = 1.

Therefore ∥s∥q ≤ 1. This proves that idpq is bounded:

∥idpq∥ = sup
∥s∥p=1

∥s∥q

∥s∥p
= sup

∥s∥p=1
∥s∥q ≤ 1.
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Note that Lemma 5.1.4 implies that for 1 ≤ p ≤ q ≤ ∞, ∥ ⋅ ∥p induces a finer topology

than that induced by ∥ ⋅ ∥q on R[X]. Therefore, for C ⊆ R[X], id−1
pq (C

∥⋅∥q
) is closed in

∥ ⋅ ∥p-topology. Thus, we have C
∥⋅∥p

⊆ C
∥⋅∥q

.

In [7, Theorem 9.1], Berg, Christensen and Ressel showed that the closure of ∑R[X]2

in the ∥ ⋅ ∥1- topology is Psd([−1,1]n). Recently, Lasserre and Netzer [39] revisited this

result with a different approach. The proof given by Berg, Christensen and Ressel in [7, 8]

is based on techniques from harmonic analysis on semigroups, whereas in [39], Lasserre

and Netzer gave a concrete approximation to construct a sequence in ∑R[X]2 for every

limit point in ∥ ⋅ ∥1. We also gave a different proof of a more general form of this result

in Chapter 4, specifically in Corollary 4.1.5. In the following, we determine the closure of

sums of 2d-powers of polynomials in all ∥ ⋅ ∥p-topologies which extends the result of Berg,

Christensen and Ressel in two directions:

1. Extending the result for ∥ ⋅ ∥1 to ∥ ⋅ ∥p, for any 1 ≤ p ≤ ∞,

2. Replacing ∑R[X]2 by ∑R[X]2d.

We begin by determining which evaluation linear functionals are continuous.

Theorem 5.1.5. Let 1 ≤ p ≤ ∞ and x ∈ Rn, and let ex ∶ Vp Ð→ R be the evaluation homo-

morphism on Vp defined by ex(f) ∶= f(x). Then the following statements are equivalent:

1. ex is continuous;

2. ∥(xα)α∈Nn∥q < ∞, where q is the conjugate of p;

3. x ∈ (−1,1)n if 1 ≤ q < ∞, and x ∈ [−1,1]n if q = ∞.

Proof. (2)⇔(3) First assume that 1 ≤ q < ∞. Let x = (x1, . . . , xn) ∈ Rn. Then

∥(xα)α∈Nn∥q = (∑α∈Nn ∣xα∣q)1/q

= (∑
∞
α1,⋯,αn=0 ∣x1∣

qα1 . . . ∣xn∣
qαn)1/q

= (∑
∞
α1=0 ∣x1∣

qα1)1/q⋯(∑
∞
αn=0 ∣xn∣

qαn)1/q,

where the latter term is a product of geometric series which is finite if and only if ∣xi∣ < 1

for i = 1, . . . n. For q = ∞,

∥(xα)α∈Nn∥∞ = sup
α∈Nn

∣xα∣.
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Hence ∥(xα)α∈Nn∥∞ < ∞ if and only if ∣xi∣ ≤ 1, for each 1 ≤ i ≤ n.

(1)⇔(2) For 1 ≤ p < ∞ it follows from Lemma 5.1.3.2. For p = ∞,

∥ex∥ = sup∥f∥∞=1 ∣f(x)∣ = sup∥f∥∞=1 ∣∑α∈Nn fαx
α∣

≤ sup∥f∥∞=1∑α∈Nn ∣fα∣ ⋅ ∣x
α∣

≤ ∑α∈Nn ∣xα∣

= ∥(xα)α∈Nn∥1.

So, if ∥(xα)α∈Nn∥1 < ∞, then ex is continuous. Conversely, if p = ∞ and ∥(xα)α∈Nn∥1 = ∞,

by equivalence of part (2) and part (3), for some 1 ≤ i ≤ n, ∣xi∣ ≥ 1. For any k ∈ N, k ≥ 1,

let fk(X) = 1
k(1 +Xi +X

2
i + ⋯ +Xk

i ) and gk(X) = 1
k(1 −Xi +X

2
i − ⋯ + (−Xi)

k). Clearly

fk, gk → 0 in ∥ ⋅ ∥∞, but

∣ex(fk)∣ ≥
k+1
k , if xi ≥ 1,

∣ex(gk)∣ ≥
k+1
k , if xi ≤ −1,

Therefore in either cases at least one of (ex(fk)) or (ex(gk)) does not converge to 0. Hence,

for x /∈ (−1,1)n, ex is not continuous. This completes the proof.

Theorem 5.1.6. Let 1 ≤ p ≤ ∞. Then Psd([−1,1]n) is a closed subset of Vp.

Proof. We first note that

Psd([−1,1]n) = Psd((−1,1)n) = ⋂
x∈(−1,1)n

e−1
x ([0,+∞)).

However, by Theorem 5.1.5(3), for every x ∈ (−1,1)n, ex is continuous on Vp. Hence the

result follows.

Theorem 5.1.7. For 1 ≤ p ≤ ∞ and d ≥ 1, ∑R[X]2d
∥⋅∥p

= Psd([−1,1]n).

Proof. First note that by Theorem 5.1.6, Psd([−1,1]n) is closed in Vp, and so,

∑R[X]2d
∥⋅∥p

⊆ Psd([−1,1]n).

On the other hand, by Lemma 5.1.4, id−1
1p(∑R[X]2d

∥⋅∥p
) is closed in V1 and contains

∑R[X]2d. Hence, by Corollary 4.1.5, it contains Psd([−1,1]n). Therefore

Psd([−1,1]n) = id1p(Psd([−1,1]n)) ⊆ ∑R[X]2d
∥⋅∥p

.

Thus ∑R[X]2d
∥⋅∥p

= Psd([−1,1]n).

64



Corollary 2.1.8 and Theorem 5.1.7 have an important consequence for the moment

problem: it implies that ∑R[X]2d satisfies the K-moment property for K = [−1,1]n, and

∥ ⋅ ∥p-continuous functionals on R[X].

Corollary 5.1.8. Let 1 ≤ p ≤ ∞, d ≥ 1 an integer, and let L ∶ R[X] Ð→ R be a linear

functional on R[X] such that ∥(L(Xα))α∈Nn∥q < ∞ where q is the conjugate of p. If

L(h2d) ≥ 0 for all h ∈ R[X], then there exists a positive Borel measure µ ∈ M+([−1,1]n)

such that

∀f ∈ R[X] L(f) = ∫[−1,1]n
f dµ.

Remark 5.1.9. A description for [−1,1]n is {1 −X2
i ∶ i = 1, . . . , n}. Using Schmüdgen’s

result (Theorem 2.3.2), to verify the moment problem for a linear functional L, one should

check the following set of inequalities:

L(h2) ≥ 0 ∀h ∈ R[X],

L(h2(1 −X2
1)) ≥ 0 ∀h ∈ R[X],

⋮

L(h2(1 −X2
1)(1 −X

2
2)) ≥ 0 ∀h ∈ R[X],

⋮

L(h2(1 −X2
1)⋯(1 −X2

n)) ≥ 0 ∀h ∈ R[X].

Even if we apply Jacobi’s result (Corollary 1.3.11), we still need to check the following set

of inequalities:

L(h2) ≥ 0 ∀h ∈ R[X],

L(h2(1 −X2
i )) ≥ 0 ∀h ∈ R[X], i = 1,⋯, n.

By Corollary 5.1.8, for a continuous linear functional on Vp, we are reduced to the single

condition L(h2d) ≥ 0 for every h ∈ R[X] and some integer d ≥ 1.

5.2 Weighted Norm-p Topologies

We can extend the result of the preceding section to a more general class of norms known

as weighted norm-p topologies. Let r = (r1, . . . , rn) be a n-tuple of positive real numbers

and 1 ≤ p < ∞. It is easy to check that the vector space

`p,r(Nn) ∶= {s ∈ RNn
∶ ∑
α∈Nn

∣s(α)∣prα1
1 . . . rαnn < ∞}
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is a Banach space with respect to the norm

∥s∥p,r = ( ∑
α∈Nn

∣s(α)∣prα1
1 . . . rαnn )

1
p .

Also the vector space

`∞,r(Nn) ∶= {s ∈ RNn
∶ sup
α∈Nn

∣s(α)∣rα1
1 . . . rαnn < ∞}

is a Banach space with respect to the norm

∥s∥∞,r = sup
α∈Nn

∣s(α)∣rα1
1 . . . rαnn .

Moreover, if we let

c0,r(Nn) ∶= {s ∈ RNn
∶ lim
α∈Nn

∣s(α)∣rα1
1 . . . rαnn = 0},

then it is straightforward to verify that c0,r(Nn) is a closed subspace of `∞,r(Nn) with

respect to the norm ∥ ⋅ ∥∞,r.

Similar to the case of norm-p topologies, it is essential for us to determine what are

the continuous linear functionals on `p,r(Nn).

Lemma 5.2.1. Let 1 < p < ∞, and let q be the conjugate of p. Then `p,r(Nn)∗ = `
q,r

− qp
(Nn),

`1,r(Nn)∗ = `∞,r−1(Nn), and c0,r(Nn)∗ = `1,r−1(Nn). In either of the cases, the duality is

densely defined by

⟨t, k⟩ = ∑
α∈Nn

t(α)k(α),

for every t, k ∈ c00(Nn) ∶= {s ∈ RNn ∶ supp s is finite}.

Proof. Let 1 ≤ p ≤ ∞. The map defined by

Tp,r ∶ `p(Nn) Ð→ `p,r(Nn)

(s(α))α∈Nn z→ (s(α)r
−α1
p

1 . . . r
−αn
p

n )α∈Nn

is an isometric isomorphism with the inverse T −1
p,r ∶ `p,r(Nn) Ð→ `p(Nn) given by

T−1
p,r((t(α))α∈Nn) = (t(α)r

α1
p

1 . . . r
αn
p
n )α∈Nn .

Now suppose that f ∈ `p,r(Nn)∗. Then f ○ Tp,r ∈ `p(Nn)∗ = `q(Nn). Hence there exist

t ∈ `q(Nn) such that

t = f ○ Tp,r.

66



Define the function t′ ∶ Nn Ð→ R by

t′(α) = r
α1
p

1 . . . r
αn
p
n t(α) (α ∈ Nn).

It is straightforward to verify that t′ ∈ `
q,r

− qp
(Nn) if 1 ≤ p < ∞, and t′ ∈ `∞,r−1(Nn) if p = 1.

Moreover

t′(α) = f(δα),

where δα is the Kroneker symbol at the point α ∈ Nn. The proof of c0,r(Nn)∗ = `1,r−1(Nn)

is similar to the preceding cases. Here the duality we need to consider is c0(Nn)∗ = `1(Nn)

which is the classical Riesz Representation Theorem.

Now suppose that Vp,r is the set of all finite support real n-sequences, equipped with

∥ ⋅ ∥p,r. We can naturally identify the space of real polynomials R[X] with Vp,r. It is

straightforward to verify that Vp,r is not a Banach space. In fact, similar to Proposition

5.1.3, we can show that the completion of Vp,r is exactly `p,r(Nn) when 1 ≤ p < ∞ and

c0,r(Nn) when p = ∞. Nonetheless, we have enough information on Vp,r so that we can

characterize the closure of sums of squares in Vp,r.

Theorem 5.2.2. Let 1 ≤ p ≤ ∞ and d ≥ 1 an integer. Then:

1. For 1 ≤ p < ∞, ∑R[X]2d
∥⋅∥p,r

= Psd(∏n
i=1[−r

1
p

i , r
1
p

i ]);

2. ∑R[X]2d
∥⋅∥∞,r

= Psd(∏n
i=1[−ri, ri]).

Proof. (1) Suppose that f ∈ R[X] and f ≥ 0 on ∏
n
i=1[−r

1
p

i , r
1
p

i ]. Since the polynomial

f̃(X) = f(r
1
p

1 X1,⋯, r
1
p
nXn) is a nonnegative polynomial on [−1,1]n, by Theorem 5.1.7,

there exist a sequence (gi)i∈N in ∑R[X]2d which approaches f̃ in ∥ ⋅ ∥p. On the other

hand,

∥gi − f̃∥
p
p = ∑α∈Nn ∣giα − f̃α∣

p

= ∑
α∈Nn

∣giα − r
α1
p

1 . . . r
αn
p
n fα∣

p

= ∑
α∈Nn

rα1
1 . . . rαnn ∣r

−α1
p

1 . . . r
−αn
p

n giα − fα∣
p

= ∥g̃i − f∥
p
p,r,

where

g̃i(X) = gi(r
−1
p

1 X1, . . . , r
−1
p
n Xn).
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However (g̃i)i∈N is a sequence of elements of ∑R[X]2d. Thus

Psd(
n

∏
i=1

[−r
1
p

i , r
1
p

i ]) ⊆ ∑R[X]2d
∥⋅∥p,r

.

For the converse, we first note that

Psd(∏n
i=1[−r

1
p

i , r
1
p

i ]) = Psd(∏n
i=1(−r

1
p

i , r
1
p

i ))

= ⋂

x∈∏ni=1(−r
1
p
i ,r

1
p
i )

e−1
x ([0,+∞)),

where ex is the evaluation map at x defined in Theorem 5.1.5. A routine calculation shows

that for every x ∈ ∏n
i=1(−r

1
p

i , r
1
p

i ),

(xα)α∈Nn ∈ `∞,r−1(Nn) if p = 1,

and

(xα)α∈Nn ∈ `
q,r

−q
p
(Nn) if 1 < p < ∞,

where q is the conjugate of p. Therefore it follows from Lemma 5.2.1 that ex is continues

on Vp,r. Hence Psd(∏n
i=1[−r

1
p

i , r
1
p

i ]) is a closed subset of Vp,r containing ∑R[X]2d. Thus

∑R[X]2d
∥⋅∥p,r

⊆ Psd(
n

∏
i=1

[−r
1
p

i , r
1
p

i ]).

This completes the proof.

(2) Similar to the argument presented in part (1), we can show that

Psd(
n

∏
i=1

[−ri, ri]) ⊆ ∑R[X]2d
∥⋅∥∞,r

.

On the other hand,

Psd(∏n
i=1[−ri, ri]) = Psd(∏n

i=1(−ri, ri))

= ⋂
x∈∏ni=1(−ri,ri)

e−1
x ([0,+∞)),

where again ex is the evaluation map. A routine calculation shows that for every x ∈

∏
n
i=1(−ri, ri), we have (xα)α∈Nn ∈ `1,r−1(Nn). Therefore it follows from Lemma 5.2.1 that

ex is continues on V∞,r. Hence Psd(∏n
i=1[−ri, ri]) is a closed subset of V∞,r containing

∑R[X]2d. Thus

∑R[X]2
∥⋅∥∞,r

⊆ Psd(
n

∏
i=1

[−ri, ri]).

The proof is now complete.
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We can now apply the preceding theorem to obtain the K-moment property for

∑R[X]2d for certain convex compact polyhedron and weighted norm-p topologies as we

summarize below in the following three theorems:

Theorem 5.2.3. Let d ≥ 1 be an integer, r = (r1, . . . , rn) with ri > 0 for i = 1, . . . , n, and

let L ∶ R[X] Ð→ R be a linear functional such that the sequence s(α) = L(Xα) satisfies

sup
α∈Nn

∣s(α)∣r−α1
1 ⋯r−αnn < ∞.

Then ∀h ∈ R[X] L(h2d) ≥ 0 if and only if there exists a positive Borel measure µ ∈

M+(∏
n
i=1[−ri, ri]) such that

∀f ∈ R[X] L(f) = ∫ f dµ.

Theorem 5.2.4. Let d ≥ 1 be an integer, 1 < p < ∞, q the conjugate of p, and r =

(r1, . . . , rn) with ri > 0 for i = 1, . . . , n. Suppose that L ∶ R[X] Ð→ R is a linear functional

such that the sequence s(α) = L(Xα) satisfies

∑
α∈Nn

∣s(α)∣qr
− q
p
α1

1 ⋯r
− q
p
αn

n < ∞.

Then ∀h ∈ R[X] L(h2d) ≥ 0 if and only if there exists a positive Borel measure µ ∈

M+(∏
n
i=1[−r

1
p

i , r
1
p

i ]) such that

∀f ∈ R[X] L(f) = ∫ f dµ.

Theorem 5.2.5. Let d ≥ 1 be an integer, r = (r1, . . . , rn) with ri > 0 for i = 1, . . . , n, and

let L ∶ R[X] Ð→ R be a linear functional such that the sequence s(α) = L(Xα) satisfies

∑
α∈Nn

∣s(α)∣r−α1
1 ⋯r−αnn < ∞.

Then ∀h ∈ R[X] L(h2d) ≥ 0 if and only if there exists a positive Borel measure µ ∈

M+(∏
n
i=1[−ri, ri]) such that

∀f ∈ R[X] L(f) = ∫ f dµ.

Note that Theorem 5.2.3 can be proved using Corollary 4.1.7. Also theorems 5.2.4 and

5.2.5 are consequences of 5.2.3.
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5.3 Coefficient-wise Convergence Topology

In this final section, we characterize the closure of ∑R[X]2d in the coefficient-wise conver-

gent topology. A net (fi)i∈I ⊂ R[X] converges in the coefficient-wise convergent topology

to f ∈ R[X] if for every α ∈ Nn, the coefficients of Xα in fi converges to the coefficient

of Xα in f . It is straightforward to verify that this topology is exactly the locally convex

topology generated by the family of seminorms πα ∶ R[X] Ð→ R defined by

πα(f) = ∣fα∣ (f ∈ R[X], α ∈ Nn).

In the following lemma, we actually show that this locally convex topology comes from a

certain metric topology. For two polynomials f, g ∈ R[X], let

ρ(f, g) = ∑
α∈Nn

∣fα − gα∣

2∣α∣(1 + ∣fα − gα∣)
. (5.3.1)

It is routine to verify that ρ defines a metric on R[X].

Lemma 5.3.1. Let (fi)i∈I ⊂ R[X] be a net and f ∈ R[X]. Then fi
ρ
Ð→ f if and only if

fi → f in the coefficient-wise convergent topology.

Proof. Let ε > 0 be given. First suppose that fiα → fα for each α ∈ N. Since for each α,
∣fiα − fα∣

1 + (∣fiα − fα∣)
< 1 and

∑
α∈Nn

1

2∣α∣ = ∑
α1∈N

1

2α1
⋯ ∑
αn∈N

1

2αn
= 2n,

there exists N ∈ N such that

∑
α∈Nn,∣α∣>N

∣fiα − fα∣

2∣α∣(1 + ∣fiα − fα∣)
≤ ∑
α∈Nn,∣α∣>N

1

2∣α∣ <
ε

2
,

By assumption, for each α with ∣α∣ ≤ N , there exists iα such that

∣fiαα − fα∣ <
ε

2D∣α∣
,

where D∣α∣ is the number of monomials of degree ∣α∣ in n variables. So, for i ≥ max{iα ∶

∣α∣ ≤ N}, we have ρ(fi, f) < ε, therefore fi
ρ
Ð→ f .

For the converse, in contrary, suppose that fi
ρ
Ð→ f but for some β ∈ Nn, fiβ /→ fβ.

Then, for each N > 0, there is i > n such that ∣fiβ − fβ ∣ ≥ ε, hence, ρ(fi, f) ≥
ε

2∣β∣(1 + ε)
.

Thus ρ(fi, f) /→ 0 which is a contradiction. So for each α, fiα → fα.
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We can apply the preceding lemma to obtain the main result of this section.

Theorem 5.3.2. Let f ∈ R[X] and d ≥ 1. Then f(0) ≥ 0 if and only if f is coefficient-wise

limit of elements of ∑R[X]2d.

Proof. Suppose that f(0) ≥ 0 and let ε > 0 be given. Then for the polynomial g = f + ε
3 ,

there exists 0 < rε ≤ 1 such that g ≥ 0 on [−rε, rε]
n by the continuity of g. So by Theorem

5.2.2, there is a polynomial sequence (g
(ε)
i )i∈N ⊂ ∑R[X]2d such that ∥g

(ε)
i − g∥1,rε

i→∞
ÐÐ→ 0.

For a typical element of the sequence we have

ρ(g
(ε)
i , g) = ∑

α∈Nn

∣g
(ε)
i − gα∣

2∣α∣(1 + ∣g
(ε)
i − gα∣)

.

Regardless to what g
(ε)
i ’s and f are, there is N > 0 such that

∑
α∈Nn,∣α∣>N

∣g
(ε)
i − gα∣

2∣α∣(1 + ∣g
(ε)
i − gα∣)

<
ε

3
.

Since ∥g
(ε)
i − g∥1,rε

i→∞
ÐÐ→ 0, one can find sufficiently large i such that

∥g
(ε)
i − g∥1,rε ≤

εrNε
3
.

Hence

∑
α∈Nn,∣s∣≤N

∣g
(ε)
iα − gα∣

2∣α∣(1 + ∣g
(ε)
iα − gα∣)

≤ ∑
α∈Nn,∣α∣≤N

∣g
(ε)
iα − gα∣

= ∑
α∈Nn,∣α∣≤N

∣g
(ε)
iα − gα∣r

∣α∣
ε

r
∣α∣
ε

(Since rε ≤ 1) ≤
∥g

(ε)
i − g∥1,rε

rNε

≤
ε

3
.

Therefore

ρ(g
(ε)
i , g) ≤

ε

3
+
ε

3
=

2ε

3
.

This implies that

ρ(g
(ε)
i , f) ≤ ρ(g

(ε)
i , g) + ρ(g, f) < (

2ε

3
) +

ε

3
= ε,

and so f ∈ ∑R[X]2d
ρ
. Thus Psd({0}) ⊆ ∑R[X]2d

ρ
. Since ∑R[X]2d ⊆ Psd({0}), the

reverse inclusion is clear.
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Remark 5.3.3. One can give a direct proof for Theorem 5.3.2, without identifying the

coefficient-wise topology as the topology induced by the metric given on (5.3.1) in the

following way. Assume that f ∈ Psd({0}) is given and let fk = 2d
√

1
k + f which is an

element in R⟦X⟧. So it can be written as fk = ∑α∈Nn fk,αX
α. Let gk = ∑∣α∣≤k fk,αX

α.

Then for each α ∈ Nn with ∣α∣ ≤ k we have

(g2d
k )α =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
k + f0 ∣α∣ = 0

fα 0 < ∣α∣ ≤ k.

Therefore for each α, (g2d
k )α

k→∞
ÐÐÐ→ fα. So g2d

k → f as k →∞ coefficient-wise.
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Chapter 6

Closures of ∑A2d

In Chapter 2, specially in Section 2.3 we mention several attempts to solve the moment

problem of the form

MS
ϕ
= Psd(KS) or TS

ϕ
= Psd(KS),

in terms of S. In Section 2.4 we formulate a variant of the moment problem (2.4.1), in-

volving the continuous linear functionals with respect to a locally convex topology instead

of any given functional. In Chapter 4, we discussed the moment problem for continuous

functionals with respect to a seminorm topology ∥ ⋅ ∥φ corresponding to an absolute value

φ and showed that

∑R[X]2d
∥⋅∥φ

= Psd(Kφ),

which solves (2.4.1) for ∥ ⋅ ∥φ. In Chapter 5, we extend the results of Chapter 4 to the

weighted `p-norm, for a specific family of absolute values. In this chapter, we relax the

condition that K be semialgebraic and solve (2.4.1) for C = ∑R[X]2d, K ⊆ XR[X] by

finding a suitable locally convex topology τ .

Convention. Throughout, we always assume that the mapˆ∶ AÐ→ C(XA) is injective.

Otherwise we factor by the kernel of ‘ˆ ’, to reduce to this case.

6.1 The Compact Case

Fix a commutative ring A with unity and assume that 1
2 ∈ A and XA ≠ ∅. Let K be

a compact subset of XA in the spectral topology on XA. By Proposition 1.2.9, the map

Φ ∶ AÐ→ C(K) is a ring homomorphism. Since K is assumed to be compact, C(K) carries

a natural topology, induced by a norm defined by

∥f∥K ∶= sup
α∈K

∣f(α)∣, ∀f ∈ C(K).
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Lemma 6.1.1. If K ⊆ XA is compact, then Φ(A) is dense in (C(K), ∥ ⋅ ∥K).

Proof. Let A = Φ(A)
∥⋅∥K

in C(K). We make use of the Stone-Weierstrass Theorem to

show that A = C(K). K is compact and Hausdorff, so once we show that A is an R-

algebra which contains all constant functions and separates points of K, we are done (See

[66, Theorem 44.7]).

Claim 1. A contains all constant functions.

This is clear. Z[1
2] ⊂ Φ(A) which is dense in R, so A contains all constant functions.

Claim 2. A is closed under addition.

Let f, g ∈ A and ε > 0 be given. Then there are a, b ∈ A such that ∥f − â∥K < ε
2 and

∥g − b̂∥K < ε
2 . Clearly ∥f + g − â − b̂∥K ≤ ∥f − â∥K + ∥g − b̂∥K < ε, hence f + g ∈ A.

Claim 3. A is closed under multiplication.

Let f, g ∈ A and 0 < ε < 1 be given. There are a, b ∈ A such that ∥f−â∥K < ε/(∥f∥K+∥g∥K+1)

and ∥g − b̂∥K < ε/(∥f∥K + ∥g∥K + 1), so ∥b̂∥K = ∥(b̂− g) + g∥K < ∥g∥K + ε/(∥f∥K + ∥g∥K + 1) <

∥g∥K + 1. Then

∥fg − âb̂∥K = ∥f(g − b̂) + b̂(f − â)∥K

≤ ∥f∥K∥g − b̂∥K + ∥b̂∥K∥f − â∥K

< ∥f∥Kε/(∥f∥K + ∥g∥K + 1) + (∥g∥K + 1)ε/(∥f∥K + ∥g∥K + 1)

= ε.

Therefore fg ∈ A.

Finally, A separates points of K, because Φ(A) does. Now by the Stone-Weierstrass

Theorem A = C(K).

Definition 6.1.2. A function ρ ∶ A Ð→ R+ is called a (ring) seminorm if (1)-(4) hold for

all a, b ∈ A, ρ is called a norm if in addition (5) also holds.

1. ρ(0) = 0,

2. ρ(a + b) ≤ ρ(a) + ρ(b),

3. ρ(−a) = ρ(a),

4. ρ(ab) ≤ ρ(a)ρ(b),

5. ρ(a) = 0 only if a = 0.
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See [65] for details on topological rings and normed rings. Note that if in addition A

is an R-algebra then a submultiplicative seminorm is in particular a ring seminorm.

Φ(A) as a subspace of (C(K), ∥ ⋅ ∥K) inherits a topology. Defining ∥ ⋅ ∥K on A by

∥a∥K = ∥â∥K induces a topology which is the weakest topology such that Φ is continuous.

But ∥ ⋅ ∥K is not necessarily a norm, unless when Φ is injective.

Corollary 6.1.3. ∥ ⋅ ∥K induces a norm on A if and only if K is a Zariski dense subset

of XA.

Proof. Since we are assuming that the map ˆ ∶ A Ð→ C(XA) is one-to-one, by Theorem

1.2.11, Φ is injective if and only if K is Zariski dense. So

∥a∥K = 0 ⇔ ∥â∥K = 0

⇔ â = 0

⇔ a ∈ ker Φ

⇔ a = 0,

which completes the proof.

For any α ∈ K we define the evaluation map at α, eα ∶ C(K, ∥ ⋅ ∥K) Ð→ R by eα(f) =

f(α). We also denote the set of real valued, nonnegative continuous functions over K by

C+(K), i.e.,

C+
(K) ∶= {f ∈ C(K) ∶ f ≥ 0 on K}.

Also we note that Psd(K) ∶= {a ∈ A ∶ â ∈ C+(K)} = Φ−1(C+(K)).

Proposition 6.1.4.

1. For each α ∈K, eα is ∥ ⋅ ∥K-continuous,

2. C+(K) is closed in (C(K), ∥ ⋅ ∥K),

3. Psd(K) is closed in (A, ∥ ⋅ ∥K).

Proof. (1) Since eα is linear, it suffices to show that

∥eα∥ = sup
f∈C(K)

∣f(α)∣

∥f∥K
< ∞.

But this is clear. Since ∣f(α)∣ ≤ ∥f∥K we deduce ∥eα∥ ≤ 1.
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(2) For each α ∈ K, e−1
α ([0,∞)) is closed, by continuity of eα. Therefore C+(K) =

⋂α∈K e
−1
α ([0,∞)) is closed.

(3) The conclusion follows from the fact that Φ is continuous, C+(K) is closed and

Psd(K) = Φ−1(C+(K)).

Theorem 6.1.5. For any compact set K ⊆ XA and integer d ≥ 1, ∑A2d
∥⋅∥K

= Psd(K).

Proof. Since ∑A2d ⊆ Psd(K) and Psd(K) is closed, clearly ∑A2d
∥⋅∥K

⊆ Psd(K). To show

the reverse inclusion, let a ∈ Psd(K) and ε > 0 be given. Since â ≥ 0 on K,
2d
√
â ∈ C(K).

Continuity of multiplication implies the continuity of the map f ↦ f2d. Therefore, there

exists δ > 0 such that ∥
2d
√
â − f∥K < δ implies ∥â − f2d∥K < ε. Using Lemma 6.1.1, there is

b ∈ A such that ∥
2d
√
â − b̂∥K < δ and so ∥â − b̂2d∥K < ε. By definition, â − b̂2d = Φ(a − b2d)

and hence ∥a − b2d∥K < ε. Therefore, any neighbourhood of a has nonempty intersection

with ∑A2d which proves the reverse inclusion Psd(K) ⊆ ∑A2d
∥⋅∥K

.

Corollary 6.1.6. For any compact, Zariski dense subset K of XA and d ≥ 1, there exists

a locally convex and Hausdorff topology τ on A such that ∑A2d
τ
= Psd(K).

Proof. This is an immediate consequence of theorems 6.1.5 and 6.1.3.

Corollary 6.1.7. If K is a compact subset of XA and L ∶ A Ð→ R is ∥ ⋅ ∥K-continuous

Z[1
2] map, such that L(a2d) ≥ 0 for all a, b ∈ A, then there exists a unique Borel measure

µ ∈ M+(K) such that ∀a ∈ A L(a) = ∫K â dµ.

Proof. Let Â ∶= {â ∶ a ∈ A} and define L̄ ∶ ÂÐ→ R by L̄(â) = L(a).

We prove if â ≥ 0, then L(a) ≥ 0. To see this, let ε > 0 be given and find δ > 0 such

that ∥a − b∥K < δ implies ∣L(a) −L(b)∣ < ε. Take cε ∈ A such that ∥a − c2d
ε ∥K < δ. Then

L(c2d
ε ) − ε < L(a) < L(c2d

ε ) + ε,

let ε→ 0, yields L(a) ≥ 0.

Note that L̄ is well-defined, since â = 0, implies â ≥ 0 and −â ≥ 0, so L̄(â) ≥ 0 and

L̄(−â) ≥ 0, simultaneously and hence L̄(â) = 0. ∥ ⋅ ∥K-continuity of L on A, implies ∥ ⋅ ∥K-

continuity of L̄ on Â. Let A be the R-subalgebra of C(K), generated by Â. Elements of

A are of the form r1â1 + ⋯ + rnân, where ri ∈ R and ai ∈ A, i = 1,⋯, n. L̄ is continuously

extensible to A by L̄(râ) ∶= rL̄(â). By Lemma 6.1.1, Â and hence A are dense in the
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space (C(K), ∥ ⋅ ∥K). Hahn-Banach Theorem gives a continuous extension of L̄ to C(K).

Denoting the extension again by L̄, an easy verification shows that L̄(C+(K)) ⊆ R+.

Applying Riesz Representation Theorem, the result follows.

6.2 The Non-Compact Case

So far, the compactness of K helped us to define a topology on A such that the equality

∑A2 = Psd(K) holds. If we drop the compactness condition on K, then we are not able

to define ∥ ⋅ ∥K anymore. One key step in the described procedure was the continuity of

evaluation maps proved in Lemma 6.1.4(1). We now focus on this property.

Definition 6.2.1. To any homomorphism α ∈ XA we associate a seminorm ρα on C(XA)

by ρα(f) = ∣f(α)∣ for each f ∈ C(XA). For any set K ⊂ XA the family of seminorms

TK = {ρα ∶ α ∈ K} induces a topology on C(XA). We denote this topology by FK . The

maps ρ̄α ∶ a ↦ ρα(â) are seminorms on A, we denote the topology induced on A by

{ρ̄α∣A ∶ α ∈K} with TK .

Note that the sets U εα = {a ∶ ρ̄α(a) < ε}, form a sub-basis for a fundamental system of

neighbourhoods for 0, where α ∈ K and ε > 0. Moreover, the family {U εα1,...,αm(x) ∶ m ∈

N, αi ∈K, i = 1, . . . ,m, ε ∈ R>0, x ∈ A}, where

U εα1,...,αm(x) = {a ∈ A ∶ ρ̄αi(x − a) < ε, i = 1,⋯,m},

is a basis for TK . The following is immediate:

Lemma 6.2.2. For XA and (A,TK) we have

1. Psd(K) = Psd(K).

2. Psd(K) is closed in TK .

Proof. To see (1), note that each â is continuous. So â ≥ 0 on K implies â ≥ 0 on K .

(2) follows from continuity on each α ∈ K over (A,TK) and the fact that Psd(K) =

⋂α∈K α
−1([0,∞)).

For the special case K = Rn and A = R[X], it follows from [57, Proposition 6.2] that

the closure of ∑R[X]2 with respect to the finest locally multiplicatively convex topology
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η0 on R[X] is equal to Psd(Rn). Since TRn is locally multiplicatively convex and Psd(Rn)

is closed in TRn we get

Psd(Rn) = ∑R[X]2
η0
⊆ ∑R[X]2

TRn
⊆ Psd(Rn)

TRn
= Psd(Rn).

In the next theorem, we show that a similar result holds for arbitrary K and the smaller

cone of sums of 2d-powers ∑A2d ⊂ ∑A2.

Theorem 6.2.3. Let K ⊆ XA be a closed set and d ≥ 1, then ∑A2d
TK

= Psd(K).

Proof. Since ∑A2d ⊆ Psd(K) and Psd(K) is closed by Lemma 6.2.2, we have ∑A2d
TK

⊆

Psd(K).

To get the reverse inclusion, let a ∈ Psd(K) be given. We show that any neighbourhood

of a in TK has a non-empty intersection with ∑A2d.

Claim. If â > 0 on K then a ∈ ∑A2d
TK

.

To prove this, let U be an open set containing a. There exist α1, . . . , αn ∈K and ε > 0 such

that a ∈ U εα1,...,αn(a) ⊆ U . Chose m ∈ N such that max1≤i≤n αi(a) < 22dm. Now for b = a
22dm

we have 0 < αi(b) < 1. By continuity of f(t) = t2d, for each i = 1, . . . , n there exists δi > 0

such that for any t, if ∣t−αi(b)
1/2d∣ < δi, then ∣t2d −αi(b)∣ <

ε
22dm

. Take δ = min1≤i≤n δi. Let

p(t) = ∑Nj=0 λjt
j be the real polynomial satisfying p(αi(b)) =

2d
√
αi(b) for i = 1, . . . , n. Since

Z[1
2] is dense in R one can choose λ̃j ∈ Z[1

2], such that ∣∑
N
j=1 λjαi(b)

j − ∑
N
j=1 λ̃jαi(b)

j ∣ <

δ, for i = 1, . . . , n. Let c = ∑
N
j=1 λ̃jb

j ∈ A. Then ∣αi(b) − αi(c)
2d∣ < ε

22dm
. Multiplying

by 22dm, ∣αi(a) − αi(2
mc)2d∣ < ε i.e. ρ̄αi(a − (2mc)2d) < ε for i = 1, . . . , n. Therefore

U εα1,...,αn(a) ∩∑A
2d ≠ ∅ and hence a ∈ ∑A2d

TK
which completes the proof of the claim.

For an arbitrary a ∈ Psd(K), and each k ∈ N, ̂
(a + 1

2k
) > 0 on K, so ∀k ∈ N, a + 1

2k
∈

∑A2d
TK

. Letting k → ∞, ρ̄α(a +
1
2k

) → ρ̄α(a), we get a ∈ ∑A2d
TK

and hence Psd(K) ⊆

∑A2d
TK

as desired.

Corollary 6.2.4. Suppose that K is a closed subset of XA such that for some p ∈ A, Ki =

p̂−1([0, i]) is compact and L ∶ A Ð→ R is TK-continuous Z[1
2] map, such that L(a2d) ≥ 0

for all a ∈ A, then there exists a Borel measure µ ∈ M+(K) such that

∀a ∈ A L(a) = ∫
K
â dµ.
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Proof. Following the argument in the proof of Corollary 6.1.7, the map L̄ ∶ Â→ R is well-

defined and has a FK-continuous extension to the R-subalgebra A of C(K), generated by

Â. Applying Theorem 2.2.4 to L̄, p̂ and A, the result follows.

According to [8, Proposition 1.8], TK is Hausdorff if and only if for every nonzero a ∈ A

there exists α ∈ K such that ρ̄α(a) ≠ 0. But since ˆ is assumed to be one-to-one, this

happens if and only if K is Zariski dense. So we have the following.

Proposition 6.2.5. TK is Hausdorff if and only if K is Zariski dense.

Let K ⊆ XA be compact. We can define two topological structures, ∥ ⋅ ∥K and TK on A

satisfying ∑A2d
∥⋅∥K

= ∑A2d
TK

. Since every evaluation map eα for α ∈K is continuous, ρα

is continuous as well and hence every open set in TK is also open in ∥ ⋅ ∥K-topology. But

we show that ∥ ⋅ ∥K-topology is strictly finer than TK .

Lemma 6.2.6. Let K be an infinite, compact subset of XA and suppose that α1, . . . , αm ∈

K and 0 < δ < ε < 1 are given. There exists a ∈ A such that a ∈ U δα1,...,αm(0) and ∥a∥K > ε.

Proof. Note that XA is Hausdorff and so is K. Compactness of K implies that K is a

normal space. Take C = {α1, . . . , αm} and D = {β}, where β ∈ K ∖ C. By Urysohn’s

lemma, there exists a continuous function f ∶K → [0,1] such that f(C) = 0 and f(β) = 1.

For γ < min{δ,1 − ε}, there exists a ∈ A such that ∥f − â∥K < γ by Lemma 6.1.1. Clearly

a ∈ U δα1,...,αm and â(β) > ε which implies that ∥a∥K > ε as desired.

Corollary 6.2.7. If K is an infinite, compact subset of XA, then the ∥ ⋅ ∥K-topology is

strictly finer than TK

Proof. Let Nε = {a ∈ A ∶ ∥a∥K < ε} be an open ball around 0 in ∥ ⋅ ∥K-topology for

0 < ε < 1. We show that Nε does not contain any open neighbourhood of 0 in TK . In

contrary, suppose that 0 ∈ U δα1,...,αm ⊆ Nε. Obviously δ ≤ ε and by Lemma 6.2.6, there

exists a ∈ U δα1,...,αm such that ∥a∥K > ε and hence a /∈ Nε which is a contradiction. So, Nε

is not open in TK and hence, ∥ ⋅ ∥K-topology is strictly finer that TK .

6.3 Application to the Ring of Polynomials

We are mainly interested in the special case of real polynomials. In this case, R[X] is the

free finitely generated commutative R-algebra generated by X1,⋯,Xn and hence every

79



α ∈ XR[X] is completely determined by α(Xi), i = 1, . . . , n. So, XR[X] = Rn with the usual

euclidean topology.

Corollary 6.3.1. Suppose that K is a compact subset of Rn which is Zariski dense in Rn.

There is a norm topology on R[X] such that ∑R[X]2d = Psd(K).

Proof. The existence of such a topology is a consequence of Theorem 6.1.6. The fact that

∥ ⋅ ∥K is actually a norm, follows from Corollary 6.1.3.

Remark 6.3.2. According to Theorem 2.1.7, ∑R[X]2d
∥⋅∥K

= Psd(K) is equivalent to

(∑R[X]
2d
)
∨
∥⋅∥K = Psd(K)

∨
∥⋅∥K .

One can restate the previous conclusion in terms of moments in the following way. For

a linear functional L on R[X] with L(p2d) ≥ 0 for all p ∈ R[X], if there exists a positive

real number C such that ∀s ∈ Nn ∣L(Xs)∣ ≤ C∥Xs∥K , then there exists a Borel measure

µ ∈ M+(K), representing L, i.e.

∀f ∈ R[X] L(f) = ∫
K
f dµ.

It worth noting that for a functional L, being positive semi-definite is equivalent to the

condition L(p2) ≥ 0 for all p ∈ R[X], and hence, L(p2d) ≥ 0 for d ≥ 1. So, it is immediate

that every ∥ ⋅ ∥K-continuous positive semi-definite functional on R[X], comes from a Borel

measure on K.

6.3.1 Comparison with other topologies

In this section we compare the topologies ∥ ⋅ ∥K , TK of this chapter with other topologies

studied in Chapter 4 and the one introduced by Lasserre in [38]. Recall that for an

absolute value φ on Nn, since Mφ,2d is archimedean (Lemma 4.2.2), the set Kφ is compact

by Theorem 1.3.10, so ∥ ⋅ ∥Kφ is defined and we have the following:

Proposition 6.3.3. The ∥ ⋅ ∥φ-topology is finer than the ∥ ⋅ ∥Kφ-topology and

∑R[X]2d
∥⋅∥φ

= ∑R[X]2d
∥⋅∥Kφ

= Psd(Kφ),

for every d ≥ 1.
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Proof. To prove that ∥ ⋅ ∥φ-topology is finer than ∥ ⋅ ∥Kφ-topology, we show ∥f∥Kφ ≤ ∥f∥φ.

Note that Kφ is compact by Lemma 4.2.2, so

∥f∥Kφ = supx∈Kφ ∣f(x)∣

= supx∈Kφ ∣∑ fsx
s∣

≤ supx∈Kφ∑∣fs∣ ⋅ ∣x
s∣

≤ ∑ ∣fs∣φ(s)

= ∥f∥φ.

.

Therefore, the identity map id ∶ (R[X], ∥ ⋅∥φ) Ð→ (R[X], ∥ ⋅∥Kφ) is continuous and so ∥ ⋅∥φ-

topology is finer than ∥ ⋅ ∥Kφ-topology. Moreover, ∑R[X]2d
∥⋅∥Kφ = Psd(Kφ) by Corollary

6.3.1.

Recently, Lasserre [38] proved that there exists a norm ∥ ⋅ ∥w on R[X] such that for

any basic semialgebraic set K ⊆ Rn, defined by a finite set of polynomials S, the closure

of the quadratic module MS and the preordering TS with respect to ∥ ⋅ ∥w are equal to

Psd(K). The ∥ ⋅ ∥w is explicitly defined by

∥ ∑
s∈Nn

fsX
s
∥w = ∑

s∈Nn
∣fs∣w(s),

where w(s) = (2⌈∣s∣/2⌉)! and ∣s∣ = ∣(s1, . . . , sn)∣ = s1 +⋯ + sn.

Proposition 6.3.4. For any compact basic semi-algebraic set KS ⊂ Rn, the ∥ ⋅ ∥w-topology

is finer than ∥ ⋅ ∥KS -topology and

MS
∥⋅∥w

= TS
∥⋅∥w

= ∑R[X]2d
∥⋅∥KS

= Psd(KS),

where d ≥ 1.

Proof. To show that ∥ ⋅ ∥w-topology is finer than ∥ ⋅ ∥KS -topology, it suffices to prove that

the formal identity map

id ∶ (R[X], ∥ ⋅ ∥w) Ð→ (R[X], ∥ ⋅ ∥KS)

is continuous. Let pi ∶ Rn Ð→ R be the projection on ith coordinate and

M = max
1≤i≤n

{∣pi(x)∣ ∶ x ∈ KS}.
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So, for each s ∈ Nn we have ∥Xs∥KS ≤ M ∣s∣. Also w(s) ≥ ∣s∣! for all s ∈ Nn. By Stirling’s

formula ∣s∣! ∼
√

2πe(∣s∣+
1
2
) ln ∣s∣−∣s∣, we see that

∥Xs∥KS
∥Xs∥w ≤ M ∣s∣

∣s∣!

∼ 1√
2π
e∣s∣(lnM−ln ∣s∣+1)− 1

2
ln ∣s∣ ∣s∣→∞

ÐÐÐ→ 0.

Therefore for some N ∈ N, if ∣s∣ > N then
∥Xs∥KS
∥Xs∥w < 1, which shows that id is bounded and

hence continuous. The asserted equality follows from Corollary 6.1.5 and [38, Theorem

3.3].

Proposition 6.3.5. For any basic semialgebraic set KS ⊂ Rn, the ∥ ⋅ ∥w-topology is finer

than TKS and

MS
∥⋅∥w

= TS
∥⋅∥w

= ∑R[X]2d
TKS

= Psd(KS),

where d ≥ 1.

Proof. It suffices to show that for any x ∈ KS , the evaluation map ex(f) = f(x) is ∥ ⋅ ∥w-

continuous. Since
∣xs∣
∣s∣!

∣s∣→∞
ÐÐÐ→ 0, we deduce that supf∈R[X]

∣f(x)∣
∥f∥w is bounded. So, ex and

hence ρx is ∥ ⋅ ∥w-continuous. Therefore any basic open set in TKS is ∥ ⋅ ∥w-open. The

asserted equality follows from Theorem 6.2.3 and [38, Theorem 3.3].

The following diagram shows the relation of all different topologies we discussed. D is

a closed set, K is compact and φ is an absolute value. The left side diagram demonstrates

topologies and their relations, while the right side consists of the corresponding closures

for ∑R[X]2. The arrows show the inclusion in both.

ϕ

∥ ⋅ ∥w

OO

TD

;;wwwwwwwww

TK // ∥ ⋅ ∥K

ZZ6666666666666666

TKφ // ∥ ⋅ ∥Kφ // ∥ ⋅ ∥φ

VV........................

∑R[X]2

��
Psd(Rn)

xxrrrrrrrrrr

��:
::

::
::

::
::

::
::

::

��

Psd(D)

Psd(K)

Psd(Kφ)
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Summary and Concluding Remarks

This thesis provides some new advancements in two aspects of real algebraic geometry

related to the moment problem:

1. SOS representation,

2. SOS approximation.

SOS representation

It is known that identifying whether a polynomial f ∈ R[X] is PSD is a NP-hard problem.

A popular simplification to this problem is considering SOS polynomials instead of PSD

ones which is solvable in polynomial time using SDP method. But in practice SDP method

is only feasible for small n (number of variables) and small 2d (degree of the polynomial).

In Chapter 3 Theorem 3.1.3, we applied a result of Hurwitz and Reznick to give a new

sufficient condition for a polynomial to be a sum of squares. This sufficient condition is

applied to find a lower bound of an even degree polynomial in Theorem 3.2.1. The method

described in Section 3.2 associates a geometric program to f which for its optimum value

m∗, fgp = f0 −m
∗ is a lower bound for f on Rn.

A computer program implementing this method is designed to measure the perfor-

mance of computational aspects of fgp compare to fsos. The results are given in tables

3.1, 3.2 and 3.3. Appendix C contains an early version of the program written for Sage

and the latest version of the code is available at http://goo.gl/iI3Y0.

The method of SDP is easy to extend to constrained optimization problems over basic

closed semialgebraic sets, i.e., the problems of type

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Minimize f(X)

Subject to gi(X) ≥ 0 i = 1, . . . , s
(1)
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can be solved using semidefinite programming. At the moment it is not known to the us

whether there exists a generalization of the method of Chapter 3 to solve (1) optimza-

tion problems or not. However, there exist some progress on approximating a lower for

problems of the special type

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

minimize f(X)

subject to M −∑
n
i=1X

2d
i ≥ 0

for M > 0 and 2d ≥ deg f .

Question. How one can extend the method of geometric program to approximate a lower

bound for (1)?

SOS approximation

The rest of the thesis (chapters 4, 5 and 6) is devoted to the K-moment problem for

continuous linear functionals. In Section 2.4, it is proved that for a cone C ⊆ R[X], a

locally convex topology τ on R[X] and a closed set K ⊆ Rn, the followings are equivalent:

• C
τ
= Psd(K),

• For every τ -continuous linear functional L with L(C) ⊆ R+ there exists a positive

Borel measure µ on K such that

∀f ∈ R[X] L(f) = ∫
K
f dµ.

Then we studied various cases for C, τ and K:

C = ∑R[X]
2d and τ = ∥ ⋅ ∥φ-topology

If φ ∶ Nn Ð→ R+ satisfies φ(1, . . . ,1) ≥ 1 and φ(α + β) ≤ φ(α)φ(β) then the map ∥ ⋅ ∥φ ∶

R[X] Ð→ R+ defined by

∥∑
α

fαX
α
∥φ ∶= ∑

α

∣fα∣φ(α),

is a submultiplicative seminorm and for

Kφ ∶= {x ∈ Rn ∶ ∣xα∣ ≤ φ(α) ∀α ∈ Nn},
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the equation ∑R[X]2d
∥⋅∥φ

= Psd(Kφ) holds. A different but equivalent reading of this

result says that for every ∥ ⋅ ∥φ-continuous linear functional L for which L(f2d) ≥ 0 for all

f ∈ R[X], there exists a positive Borel measure µ on Kφ such that L(f) = ∫Kφ f dµ.

Then we show that this result is extendible to the semigroupring C[S], where S is

a commutative semigroup with convolution and neutral element. This result generalizes

Berg et al.’s 1976 [7].

C = ∑R[X]
2d and τ = ∥ ⋅ ∥p,r-topology

Taking r = (r1, . . . , rn) ∈ (R>0)n, the map φ(α) = rα is an absolute value on Nn. For

1 ≤ p < ∞ the maps

∥∑
α

fαX
α
∥p,r ∶= (∑

α

∣fα∣
prα)

1
p

,

and

∥∑
α

fαX
α
∥∞,r ∶= max

α
∣fα∣r

α

are different norms, inducing different topologies on R[X]. The closure result and hence

the moment problem corresponding to these norms is the following (Theorem 5.2.2):

• ∑R[X]2d
∥⋅∥p,r

= Psd(∏n
i=1[−r

1
p

i , r
1
p

i ]),

• ∑R[X]2d
∥⋅∥∞,r

= Psd(∏n
i=1[−ri, ri]).

C = ∑R[X]
2d and compact K

For a given compact subset K of Rn,

∥f∥K ∶= sup
x∈K

∣f(x)∣

defines a seminorm on R[X]. The necessary and sufficient condition on K which guaran-

tees ∥⋅∥K to be a norm is given (Corollary 6.1.3). It is proved that ∑R[X]2d
∥⋅∥K

= Psd(K)

(Theorem 6.1.5).

C = ∑R[X]
2d and closed K

Replacing the compactness condition on K ⊆ Rn with closeness annihilates ∥ ⋅ ∥K-topology

to be defined. But to each a ∈K we can assign a seminorm ρa, defined by ρa(f) = ∣f(a)∣.
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The family of seminorms {ρa ∶ a ∈K} induces a locally convex topology TK on R[X]. It

is also proved that ∑R[X]2d
TK

= Psd(K) (Theorem 6.2.3).

All the results on the moment problem are stated for sums of 2dth powers which seems

to be an improvement. But in contrast to sums of squares, there is no systematic method

to study sum of 2dth powers decompositions of polynomials for d > 1. Note that for d = 1,

semidefinite programming provides a practical method to work with sums of squares.

Question. Is there an effective decision procedure like semidefinite programming for sums

of squares, to determine whether a polynomial is a sum of 2dth powers?

We have tried to state the results of chapters 4, 5 and 6 in a more general framework

of topological vector spaces or commutative topological R-algebras. The reason is that

the main focus of this thesis is on the ring of polynomials. The moment problem for

noncommutative algebras has been studied specially in functional analysis and it is still

an active field. A natural question is that

Question. Which parts of the theory that we developed can be carried over noncommu-

tative case?
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Appendix A

Some Model Theory of Real Closed Fields

In this appendix, first we state some basic facts about model theory of real closed

fields. The definitions and results on the model theory of real closed fields are mainly

taken from [40]. The main purpose of this chapter is to provide a concrete version of

the Abstract Positivstellensatz for finitely generated R- algebras which is used to prove

Theorem 1.4.3 and 1.4.4.

A.1 The Theory of Real Closed Fields

Let Lor be the language of ordered rings {+,−, ⋅,<,0,1}, where +, − and ⋅ are binary

function symbols, < a binary relation and 0 and 1 are constants. The axioms for ordered

fields are the following.

G1 ∀x x + 0 = x,

G2 ∀x∀y∀z x + (y + z) = (x + y) + z,

G3 ∀x∃y x + y = 0,

Gc ∀x∀y x + y = y + x,

G- ∀x∀y∀z (x − y = z ↔ x = y + z),

R1 ∀x x ⋅ 0 = 0,

R2 ∀x x ⋅ 1 = 1 ⋅ x = x,

R3 ∀x∀y∀z (x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z),

R4 ∀x∀y∀z x ⋅ (y + z) = (x ⋅ y) + (x ⋅ z),

R5 ∀x∀y∀z (x + y) ⋅ z = (x ⋅ z) + (y ⋅ z),

Rc ∀x∀y x ⋅ y = y ⋅ x,

F1 1 ≠ 0,
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F2 ∀x (x ≠ 0→ ∃y x ⋅ y = 1),

O1 ∀x∀y∀z(x < y ∧ y < z → x < z),

O2 ∀x∀y[x < y ∧ ¬(y ≤ x)] ∨ [y < x ∧ ¬(x ≤ y)] ∨ [x = y ∧ ¬(x < y ∨ y < x)],

O3 ∀x∀y∀z (x < y → x + z < y + z),

O4 ∀x∀y∀z ((x < y ∧ 0 < z) → x ⋅ z < y ⋅ z).

The theory derived from the above set of axioms in Lor is called the theory of ordered

fields and is denoted by OF. This is easy to check that for a model F ⊧ OF, the definable

set F+ = {x ∶ 0 < x ∨ x = 0} is an ordering of the field (∣F ∣, ⋅,+,0,1). For convenience, we

identify the ordering F+ by < and the ordered (∣F ∣, F +) simply by (F,<). OF together

with (RC1) and the axiom scheme (RC2n) are the axioms for the theory of real closed

fields (RCF) in Lor.

RC1 ∀x∃y (y2 = x ∨ y2 + x = 0),

RC2n ∀x0 . . .∀x2n∃y y
2n+1 +∑

2n
i=0 xiy

i = 0.

The models of RCF are exactly real closed fields with their canonical orderings. Because

the ordering is definable by the Lr-formula1

∃z (z ≠ 0 ∧ x + z2
= y),

any definable set of a model F ⊧ RCF in Lor is also definable in Lr. Also it follows from

axioms O1-O4 that ∀x1 . . .∀xn x
2
1 + ⋅ ⋅ ⋅ +x

2
n +1 ≠ 0, therefore (∣F ∣, ⋅,+,0,1) is formally real.

Definition A.1.1. A field F which is formally real as a ring is called a formally real field

(Definition 1.1.7). A real closed algebraic extension of a formally real field F is called a

real closure of F .

By Zorn’s Lemma, every formally real field F has a maximal formally real algebraic

extension. This maximal extension is a real closure of F (see [40, §3.3]). The real closures

of a formally real field may not be unique. For example, for F = Q(X), F0 = F (
√
X) and

F1 = F (
√
−X), are both formally real. If Ri denotes the a real closure of Fi, i = 0,1, then

R0 is not isomorphic to R1, because X is a square in R0, but not in R1.

1Lr denotes the language of rings, i.e., {+,−, ⋅,0,1}.
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Lemma A.1.2. If (F,<) is an ordered field, 0 < x ∈ F , and x is not a square in F , then

we can extend the ordering of F to F (
√
x).

Proof. Let P = {x ∈ F ∶ x > 0 ∨ x = 0}. The extension of P to F (
√
x) is T = ∑F (

√
x)2 ⋅P .

This is a proper preordering of F (
√
x). Otherwise, if −1 ∈ T then −1 = ∑(ai + bi

√
x)2pi,

where ai, bi ∈ F and pi ∈ P . So −1 = ∑(a2
i + b

2
ix)pi + 2∑aibipi

√
x. Since x is not a square

∑aibipi
√
x must be 0 and hence −1 = ∑(a2

i +b
2
ix)pi ∈ P which is a contradiction. Therefore

T is proper and by Proposition 1.1.6 there exists an ordering P ′ of F (
√
x) extending T

and P ′ ∩ F = P .

Corollary A.1.3. If (F,<) is an ordered field, there is a real closure R of F such that

the canonical ordering of R extends the ordering on F .

Proof. By successive application of Lemma A.1.2, we can find an ordered field (L,<)

extending (F,<) such that every positive element of F is a square in L. We now apply

Zorn’s Lemma to find a maximal formally real algebraic extension R of L. Because every

positive element of F is a square in R, the canonical ordering of R extends the ordering

of F .

A.2 Quantifier Elimination

Let L be a language and T a theory in L. We say that T has quantifier elimination if

for every formula φ, there exists a quantifier-free formula ψ such that

T ⊧ φ↔ ψ.

Theorem A.2.1. Suppose that L contains a constant symbol c, T is an L-theory, and

φ(v) is an L-formula. The following are equivalent:

1. There is a quantifier-free L-formula ψ(v) such that T ⊧ ∀v(φ(v) ↔ ψ(v)).

2. If M and N are models of T , A is an L-structure, A ⊆ M, and A ⊆ N , then

M⊧ φ(a) if and only if N ⊧ φ(a) for all a ∈ A.

Proof. See [40, Theorem 3.1.4].

The next lemma shows that we can prove quantifier elimination by getting rid of one

existential quantifier at a time.
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Lemma A.2.2. Let T be an L-theory an suppose that for every quantifier-free L-formula

θ(v,w) there is a quantifier-free formula ψ(v) such that T ⊧ ∃wθ(v,w) ↔ ψ(v). Then, T

has quantifier elimination.

Proof. Let φ(v) be an L-formula. We wish to show that T ⊧ ∀v(φ(v) ↔ ψ(v)) for some

quantifier-free φ(v). We prove this by induction on the complexity of φ(v).

If φ is quantifier-free, there is nothing to prove. Suppose that for i = 0,1, T ⊧

∀v(θi(v) ↔ ψi(v)), where ψi is quantifier free.

If φ(v) = ¬θ0(v), then T ⊧ ∀v(φ(v) ↔ ¬ψ0(v)).

If φ(v) = θ0(v) ∧ θ1(v), then T ⊧ ∀v(φ(v) ↔ (ψ0(v) ∧ ψ1(v))).

In either case, φ is equivalent to a quantifier-free formula.

Suppose that T ⊧ ∀v(θ(v,w) ↔ ψ0(v,w)), where ψ0 is quantifier-free and φ(v) =

∃wθ(v,w). Then T ⊧ ∀v(φ(v) ↔ ∃wψ0(v,w)). By our assumptions, there is a quantifier-

free ψ(v) such that T ⊧ ∀v(∃wψ0(v,w) ↔ ψ(v)). But then T ⊧ ∀v(φ(v) ↔ ψ(v)).

Combining A.2.1 and A.2.2 we get the following simple and useful test for quantifier

elimination.

Corollary A.2.3. Let T be an L-theory. Suppose that for all quantifier-free formulas

φ(v,w), if M,N ⊧ T , A is a common substructure of M an N , a ∈ A, and there is

b ∈ ∣M∣ such that M ⊧ φ(a, b), then there is c ∈ ∣N ∣ such that N ⊧ φ(a, c). Then T has

quantifier elimination.

A universal sentence is one of the form ∀vφ(v), where φ is quantifier-free. We say that

an L-theory T has a universal axiomatization if there is a set of universal L-sentences Γ

such that Γ ⊧ T and T ⊧ Γ.

Lemma A.2.4. Suppose that N is a substructure of M, a ∈ ∣N ∣, and φ(v) is a quantifier-

free formula. Then, N ⊧ φ(a) if and only if M⊧ φ(a).

Proof. Use induction on the complexity of φ.

Theorem A.2.5. An L-theory T has a universal axiomatization if and only if whenever

M ⊧ T and N is a substructure of M, then N ⊧ T . In other words, a theory preserved

under substructures if and only if it has a universal axiomatization.
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Proof. Suppose that N ⊆M. By Lemma A.2.4, if φ(v) is quantifier-free and a ∈ ∣N ∣, then

N ⊧ φ(a) if and only if M ⊧ φ(a). Thus, if M ⊧ ∀vφ(v), then so does N . Suppose that

T preserved under substructures. Let

T∀ ∶= {φ ∶ φ is universal and T ⊧ φ}.

Clearly, if N ⊧ T , then N ⊧ T∀. For other direction, suppose that N ⊧ T∀. We claim that

N ⊧ T . Let LN = L∪∣N ∣. Then N is also a structure of LN , interpreting all new symbols

a ∈ ∣N ∣ by a itself. We define the atomic diagram of N by Diag(N) ∶= {φ(a1, . . . , an) ∶ N ⊧

φ(a1, . . . , an), φ an atomic or the negation of an atomic L-fomula}.

Claim. T ∪Diag(N) is satisfiable.

Suppose not. Then, there is a finite ∆ = {ψ1, dots,ψn} ⊆ Diag(N) such that T ∪ ∆

is not satisfiable. Let c be the new constant symbol from ∣N ∣ used in ψ1, . . . , ψn and say

ψi = φi(c), where φi is a quantifier-free L-formula. Because the constant c do not occur in

T , if there is a model of T ∪{∃vφi(v)}, then by interpreting c as witnesses to the existential

formula, T ∪∆ would be satisfiable. Thus T ⊧ ∀v¬φ(v). As the later formula is universal,

∀v⋁¬φi(v) ∈ T∀, contradicting N ⊧ T∀. So there is M satisfying T ∪ Diag(N) which

implies N ⊆M.

Since T preserved under substructures, N ⊧ T and T∀ is a universal axiomatization of

T .

Corollary A.2.6. Let T be an L-theory. Then A ⊧ T∀ if and only if there is M⊧ T with

A ⊆M.

Proof. If A ⊧ T∀, follow the same argument as in Theorem A.2.5 to get a model for

T ∪Diag(A) which satisfies A ⊆M. For the reverse, note that if A ⊆M ⊧ T , thenM⊧ T∀

and by Theorem A.2.5, A ⊧ T∀ as desired.

Definition A.2.7. A theory T has algebraically prime models if for any A ⊧ T∀, there is

A ⊆ M ⊧ T such that for all N ⊧ T and embeddings j ∶ A Ð→ N , there is h ∶ M Ð→ N

completing the following diagram:

A
i //

j   B
BB

BB
BB

B M

h
��
N
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If M,N ⊧ T and M ⊆ N , we say M is simply closed in N and write M ≺s N if for any

quantifier-free formula φ(v,w) and any a ∈ ∣M∣, if N ⊧ ∃wφ(a,w) then so does M.

Corollary A.2.8. If T has algebraically prime models and M≺s N whenever M⊆N are

models of T , then T has quantifier elimination.

Proof. Apply Corollary A.2.3 to A ⊧ T∀.

Recall that for two L-structures, M and N , we say M is an elementary submodel of

N , or N is an elementary extension of M if M⊆N and

M⊧ φ(a1, . . . , an) ⇔ N ⊧ φ(a1, . . . , an),

for all L-formula φ(v1, . . . , vn) and all a1, . . . , an ∈ ∣M∣.

Definition A.2.9. An L-theory T is said to be model complete if forM,N ⊧ T ,M⊆N

implies M≺N .

Proposition A.2.10. If T has quantifier elimination, then T is model complete.

Proof. Suppose thatM⊆N are models of T . We show thatM is an elementary submodel

of N . Let φ(v) be an L-formula, and a ∈ ∣M∣. There is a quantifier-free formula ψ(v)

such that M ⊧ ∀v(φ(v) ↔ ψ(v)). Since quantifier-free formulas are preserved under

substructures and extensions, M⊧ ψ(a) if and only if N ⊧ ψ(a). Thus

M⊧ φ(a) ⇔M ⊧ ψ(a) ⇔ N ⊧ ψ(a) ⇔ N ⊧ φ(a).

A.3 Tarski’s Transfer Principle

We now show that RCF has quantifier elimination.

Lemma A.3.1. RCF∀ is the theory of ordered integral domains.

Proof. Clearly, any substructure of a real closed field is an ordered integral domain. If

(D,<) is an ordered integral domain and F = ff(D), then we can order F by

a

b
> 0⇔ a ⋅ b > 0.

By Corollary A.1.3, we can find (R,<) ⊧ RCF such that (F,<) ⊆ (R,<).
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Corollary A.3.2. If (F,<) is an ordered field and R1 and R2 are real closures of F

where the canonical ordering extends the ordering of (F,<), then there is a unique field

isomorphism between R1 and R2 that is the identity on F .

Corollary A.3.3. RCF has algebraically prime models.

Proof. Let (D,<) be an ordered domain and (R,<) be the real closure of ff(D) compatible

with the ordering of D. Let (F,<) be any real closed field extension of (D,<). Let

K = {α ∈ F ∶ α is algebraic over ff(D)}. K is real closed and since the ordering of K

extends (D,<), by Corollary A.3.2, there is an isomorphism between F and K, fixing

D.

Theorem A.3.4. RCF admits quantifier elimination in Lor.

Proof. Since RCF has algebraically prime models, by Corollary A.2.8, it suffices to show

that F ≺s K when F,K ⊧ RCF and F ⊆ K. Let φ(v,w) be a quantifier-free formula and

a ∈ F , b ∈K be such that K ⊧ φ(b, a). We must find b′ ∈ F such that F ⊧ φ(b′, a).

Note that

p(X) ≠ 0↔ (p(X) > 0 ∨ −p(X) > 0)

and

p(X) /> 0↔ (p(X) = 0 ∨ −p(X) > 0).

So, we may assume that φ is a disjunction of conjunctions of formulas of the form p(v,w) =

0 or p(v,w) > 0. Let us assume that

φ(v, a) ↔
n

⋀
i=1

pi(v) = 0 ∧
m

⋀
i=1

qi(v) > 0,

where p1, . . . , pn, q1, . . . , qm ∈ F [X]. If any of the polynomials pi is nonzero, then b is

algebraic over F , and since F has no proper formally real algebraic extension, we conclude

that b ∈ F . Thus we reduce to case that

φ(v, a) ↔
m

⋀
i=1

qi(v) > 0.

The polynomial qi(X) can only change signs at zeros of qi and all zeros of qi are in F .

Therefore, we can find ci ∈ F ∪ {−∞} and di ∈ F ∪ {∞} such that ci < b < di and qi(x) > 0

for all x ∈ (ci, di). Let c = max{c1, . . . , cm} and d = min{d1, . . . , dm}. Then, c < d and

⋀
m
i=1 qi(x) > 0 whenever c < x < d. So, there is a b′ ∈ F such that F ⊧ φ(b′, a).
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Corollary A.3.5. RCF is model complete and RCF = Th(R,+, ⋅,<).

The following well-known result about real closed fields has many applications in real

algebra. It can be deduced from the Tarski-Seidenberg Theorem [63, 59]. It also can be

deduced from Lang’s Homomorphism Theorem.

Corollary A.3.6 (Tarski’s Transfer Principle). Suppose (F,<) is an ordered field ex-

tension of (R,<) where R is a real closed field. Suppose that ∃x1, . . . , xn ∈ F satisfying

some finite system of polynomial equations and inequalities with coefficients in R. Then

∃x1, . . . , xn ∈ R satisfying these same equations and inequalities.

We denote by HomR(A,R) the set of all nonzero R-algebra homomorphisms from A

to R. In spite of what described in Remark 1.2.6 for the case R = R, in general a ring

homomorphism α ∶ A Ð→ R is not necessarily an R-algebra homomorphism. For example

let A = R = ⋃R((X
1
n )) be the field of Puiseux series which is real closed [3, Theorem

2.91]. The map Θ ∶ R Ð→ R defined by Θ(X) = X3 nontrivial ring homomorphism from

R to R which is not an R-algebra homomorphism.

Theorem A.3.7. Let A be a finitely generated R-algebra, where R is a real closed field.

Then HomR(A,R) is dense in Sper(A) with patch topology (and hence in spectral topology).

Note that here we identify orderings of the form α−1(R+) ∈ Sper(A) by α ∈ HomR(A,R)

itself.

Proof of A.3.7. A basic open set of Sper(A) in patch topology is of the form

U = {P ∈ Sper(A) ∶ ai /∈ P, bj ∈ P, i = 1, . . . , n, j = 1, . . . ,m},

for ai, bj ∈ A. Let P ∈ U and consider the field extension (F,<) of (R,<) defined by F = ffAp ,

where p = supp (P ) and ‘<’ is the ordering on F defined by P using Proposition 1.1.5.

Since A is a finitely generated R-algebra, A itself is a homomorphic image of R[X] =

R[X1, . . . ,Xs] under an R-algebra homomorphism π and, by Hilbert’s Basis Theorem,

kerπ is a finitely generated, i.e., kerπ = ⟨h1(X), . . . , hl(X)⟩ for h1(X), . . . , hl(X) ∈ R[X].

For each i = 1, . . . , n and j = 1, . . . ,m, ∃fi, gj ∈ R[X] such that ai = π(fi(X)) and bj =

π(gj(X)), where

R[X]
π // A

ι // F = ffAp .
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Let xi = π(Xi) + p, i = 1, . . . , s and x = (x1, . . . , xk). Then ι(ai) = ιπ(fi) = fi(x) < 0,

ι(bj) = ιπ(gj) = gj(x) ≥ 0 and π(hk) = 0 for each i = 1, . . . , n, j = 1 . . . ,m and k = 1 . . . , l.

By Tarski’s Transfer Principle A.3.6, there exists y = (y1, . . . , ys) ∈ R
s such that fi(y) < 0,

gj(y) ≥ 0 and hk(y) = 0 for i = 1, . . . , n, j = 1, . . . ,m and k = 1, . . . , l. Now the R-

algebra homomorphism α ∶ A Ð→ R defined by α(π(Xi)) = yi is well-defined and we have

α−1(R+) ∈ U as desired.

Denoting HomR(A,R)∩SperTS(A) by KRTS we have the concrete version of the Abstract

Positivstellensatz 1.2.4.

Theorem A.3.8 (Concrete Positivstellensatz). Let A be a finitely generated R-algebra,

R a real closed filed, S a finite subset of A and a ∈ A. Then

1. â > 0 on KRTS ⇔ ∃p, q ∈ TS (pa = 1 + q).

2. â ≥ 0 on KRTS ⇔ ∃p, q ∈ TS ∃m ∈ N (pa = a2m + q).

3. â = 0 on KRTS ⇔ ∃m ∈ N (−a2m ∈ TS).

Proof. (1) It suffices to show that â > 0 on KTS if and only if SgnPa > 0 on SperTS(A), then

the conclusion follows from Abstract Positivstellensatz (1). One direction (⇐) is trivial.

For the converse, note that SgnPa = 1 over KRTS is equivalent to the condition α(a) > 0 for

all α ∈ KRTS . By assumption

KRTS ⊆ {P ∈ SperTS(A) ∶ SgnPa = 1}

= {P ∈ SperTS(A) ∶ − a /∈ P}

= U(−a).

Now, in contrary, assume that ∃P ∈ SperTS(A) such that SgnPa ≤ 0. In other words,

U(−a)c ∩ SperTS(A) ≠ ∅. Then

SperTS(A) = ⋂
s∈S

U(s)c. (A.3.1)

The equality (A.3.1) shows that for finite S, SperTS(A) is open in patch topology2. There-

fore U(−a)c ∩ SperTS(A) is (a non-empty) open in patch topology. By Theorem A.3.7,

A = HomR(A,R) ∩ [U(−a)c ∩ SperTS(A)] ≠ ∅.

2Note that in general, (A.3.1) implies the compactness of SperT (A), for any preordering T .
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But A ⊆ KRTS and for every α ∈ A, we have α(a) > 0, a contradiction. Thus SgnPa = 1 on

SperTS(A) as desired. This completes the proof of (1).

A similar argument can be used to prove (2) and (3).

96



Appendix B

Generalized Moment Problem

In [37], Lasserre introduces a general setting for the moment problem which covers a

broad range of problems appearing in different areas of mathematics. We show that the

two main topics of this thesis can be considered as variants of Lasserre’s formulation.

Recall that M+(K) denotes the set of all finite Borel measures on K, where K is

assumed to be a locally compact topological space. A function f ∶ K Ð→ R is called a

Borel function if for every Borel set B of R, f−1(B) is a Borel set in K.

Definition B.9. Let K ⊆ Rn be a Borel set, Γ a set of indices, {γi ∶ i ∈ Γ} a set of reals,

and f, hi ∶ K Ð→ R, i ∈ Γ are Borel functions that are integrable with respect to every

measure µ ∈ M+(K). The Generalized Moment Problem (GMP) is the problem of finding

ρmom = sup{∫
K
f dµ ∶ µ ∈ M+(K), ∫

K
hi dµ ≤ γi ∀i ∈ Γ}. (B.1)

Example B.10. K-Moment Problem. For the case f = 0, hα = ±X
α, α ∈ Γ ⊆ Nn, (B.1)

becomes the feasibility problem defined in 2.2.1 in the following settings:

Take f to be a constant function for example f = 0 and for each α ∈ Γ, let hα1 = X
α,

hα2 = −X
α, γα1 = γα and γα2 = −γα. Now, the K-moment problem 2.2.1 has a solution if

and only if the following GMP has a feasible solution.

sup{0 ∶ µ ∈ M+(K), ∫
K
hαi dµ ≤ γαi α ∈ Γ, i = 1,2}.

Example B.11. Polynomial Optimization. With f ∶ Rn Ð→ R and K ⊆ Rn, consider

the constrained optimization problem

f∗ = sup
x∈K

f(x), (B.2)

which we rewrite as

ρmom = sup{∫
K
f dµ ∶ µ ∈ M+(K), ∫

K
dµ = 1}. (B.3)

Clearly, the equality ∫K dµ = 1 in (B.3) is obtained by taking Γ = {1,2}, γ1 = γ2 = 1, h1 = 1

and h2 = −1 in (B.1).
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We show that (B.2) and (B.3) are equivalent. i.e., f∗ = ρmom.

If f∗ = +∞, let M be arbitrary large, and let x ∈ K be such that f(x) ≥ M . Then, with

µ = δx ∈ M+(K), the Dirac measure at x, we have ∫K f dµ = f(x) ≥M and so ρmom = +∞.

Now, suppose that f∗ < +∞. Since ∀x ∈ K, f(x) ≤ f∗, then ∫K f dµ ≤ f∗ and hence

ρmom ≤ f∗. Conversely, with every x ∈ K, we associate the Dirac measure δx ∈ M+(K)

which is a feasible solution of (B.3) with value f(x), leading to ρmom ≥ f∗. Therefore

ρmom = f∗ as desired.

This is a version of the moment problem we discussed in Chapter 3.
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Appendix C

Source Code to Find Lower Bounds

This chapter contains source code written in Sage to compute lower bounds fsos and

fgp, introduced in Chapter 3.

C.1 Main Package

This section contains the source code of two main classes, GlOptGeoPrg to compute fgp and

SosTools to compute fsos, written for Sage. The solver used for SDP and also GP are sdp

and gp from CvxOpt 1.1.4, developed by “Joachim Dahl” and “Lieven Vandenberghe”

for Python. The latest version of this package, which is called CvxAlgGeo is available

at http://goo.gl/iI3Y0.

There is also an earlier version written on Mathematica and for a given polynomial,

computes rL, rFK , rdmt and generates a Matlab code to solve the SDP and GP related

to the polynomial to find fsos and fgp. It uses SosTools and Sdp3-4.0 to find fsos and

GPposy to find fgp in Matlab. A copy of this code is available at http://goo.gl/bpSzg.

C.1.1 GlOptGeoPrg

The following code is the implementation of the geometric program to calculate fgp intro-

duced in Chapter 3.

import numpy

RealNumber = float # Required for CvxOpt

Integer = int # Required for CvxOpt

from cvxopt.base import matrix as Mtx

from cvxopt import solvers

from array import array

from time import time, clock

class GlOptGeoPrg:
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"""

A class to find lower bounds of an even degree polynomial, using

Geometric Programs.

"""

number_of_variables=1;

total_degree=2;

polynomial=0;

constant_term=0;

fgp=0;

Info={};

def __init__(self,f):

self.polynomial=f;

self.number_of_variables=len(f.variables());

self.total_degree=f.degree();

self.constant_term=f.constant_coefficient();

def is_square_mono(self,mono,coef):

"""

This functions gets the coefficient and the exponent of a term and

returns True if it is an square term and False otherwise.

"""

flag=True;

if coef<0:

return False

exp=mono.exponents();

for ex in exp[0]:

flag=flag & (ex%2==0)

return flag;
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def Delta(self):

"""

This function returns a list of pairs (Coefficient, Monomial)

where the corresponding term is not a square.

"""

f=self.polynomial;

d1=[];d2=[];d3=[]

monos=f.monomials();

coefs=f.coefficients();

for i in range(0,len(monos)):

if not self.is_square_mono(monos[i], coefs[i]):

tmpexp=monos[i].exponents();

NAlpha=self.n_alpha(tmpexp[0]);

if NAlpha!=0:

d1.append(coefs[i]);

d2.append(tmpexp[0]);

d3.append(NAlpha);

return [d1,d2,d3];

def tuple_to_exp(self,t1,t2):

"""

This function takes two tuple of real numbers, raise each one

in the fist one to the power of the corresponding entity in

the second and then multiply them together.

"""

mlt=1;

n=len(t1);

for i in range(0,n):
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if (t1[i]==0) and (t2[i]==0):

continue;

mlt*=t1[i]^t2[i];

return mlt;

def n_alpha(self,alpha):

"""

This function, counts the number of non-zero entities in the given

exponent.

"""

num=0;

for i in alpha:

if i!=0:

num+=1;

return num;

def sum_a_alpha(self,delta):

"""

Counts number of auxiliary variables for lifting a certain monomial.

"""

s=0;

for a in delta:

s+=self.n_alpha(a);

return s;

def non_zero_before(self,mon,idx):

"""

Counts the number of auxiliary lifting variables before a variable

in a certain monomial.

"""
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cnt=0;

for i in range(idx):

if mon[i]!=0:

cnt+=1;

return cnt;

def init_geometric_program(self,d,Delta):

"""

This function initializes the geometric program associated to

the input a polynomial.

"""

SumNAlpha=sum(Delta[2]);

num=len(Delta[0]);

n=len(Delta[1][0]);

F=matrix(RR,num+SumNAlpha,SumNAlpha,0);

G=matrix(RR,num+SumNAlpha,1,0);

K=[];

cntr=0;

for i in range(num):

absalpha=sum(Delta[1][i]);

G[i]=log((d-absalpha)*\\

(self.tuple_to_exp(Delta[1][i],Delta[1][i])*\\

(1.0*Delta[0][i]/d)^d)^(1.0/(d-absalpha)));

for j in Delta[1][i]:

if j!=0:

F[i,cntr]=-j*(1.0/(d-absalpha));

cntr+=1;

K.append(num);

cntr=0;
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for j in range(n):

alphaidx=0;

cnt=0;

for i in range(num):

if Delta[1][i][j]!=0:

F[num+cntr,alphaidx+\\

self.non_zero_before(Delta[1][i],j)]=1;

cntr+=1;

cnt+=1;

alphaidx+=Delta[2][i];

if cnt!=0:

K.append(cnt);

return [K,F,G];

def Matrix2CVXOPT(self,M):

"""

Converts a Sage matrix into a matrix acceptable for

the CvxOpt package.

"""

n=M.ncols();

m=M.nrows();

CM=[];

for j in range(n):

tmp=[];

for i in range(m):

CM.append(M[i,j]);

CC=Mtx(array(’d’, CM), (m,n))

return CC;

def f_gp(self):
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"""

The main function to compute the lower bound for an

even degree polynomial, using Geometric Program.

"""

n=self.number_of_variables;

d=self.total_degree;

f=self.polynomial

f0=self.constant_term;

delt=self.Delta();

GP=self.init_geometric_program(d,delt);

K=GP[0];

F=self.Matrix2CVXOPT(GP[1]);

g=self.Matrix2CVXOPT(GP[2]);

start = time();

start2 = clock();

sol = solvers.gp(K, F, g);

elapsed = (time() - start);

elapsed2 = (clock()-start2);

self.fgp=f0-e^(sol[’primal objective’]);

self.Info={"gp":self.fgp, "Wall":elapsed, "CPU":elapsed2};

if (sol[’status’]==’unknown’) and (sol[’gap’] > 0.00000001):

self.Info[’status’]= ’Singular KKT’;

else:

self.Info[’status’]= ’Optimal’;

#print sol;

return self.fgp;

C.1.2 SosTools

The following code is the implementation of the semidefinite program to calculate fsos

from Chapter 3.
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import numpy

RealNumber = float # Required for CvxOpt

Integer = int # Required for CvxOpt

from cvxopt.base import matrix as Mtx

from cvxopt import solvers

from array import array

from time import time, clock

class SosTools:

"""

A class to work with sum of square decomposition of polynomials.

"""

number_of_variables=1;

total_degree=2;

polynomial=0;

Rng=[];

fullpolynomial=0;

list=[];

moment_matrix=[];

fsos=0;

Info={};

def __init__(self,f):

self.polynomial=f;

self.number_of_variables=len(f.variables());

self.total_degree=f.degree();

self.Rng=PolynomialRing(RR,’x’,self.number_of_variables);

self.fullpolynomial=(1+sum(p for p in self.Rng.gens()))^\\

self.total_degree;
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self.list=self.fullpolynomial.monomials();

self.list.reverse();

m1=self.MonomialsVector();

self.moment_matrix=m1.transpose()*m1;

def NumMonomials(self,n,d):

"""

Returns the dimension of the space of polynomials

on n variable with degree at most d.

"""

return factorial(n+d)/(factorial(n)*factorial(d));

def MonomialsVector(self):

"""

Returns a vector consists of all monomials of

degree at most d.

"""

mat=matrix(1,len(self.list),self.list);

return mat;

def Balpha(self,mono,d,vars):

"""

Constructs the matrix of multipliers.

"""

m1=self.MonomialsVector();

nD=self.NumMonomials(len(vars),d);

B=matrix(nD,nD);

M=self.moment_matrix;#m1.transpose()*m1;
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for i in range(0,nD):

for j in range(i, nD):

if M[i,j]==mono:

B[j,i]=1;

return B;#.transpose()

def ConstructSDPMat(self,n,d):

"""

Constructs the main input matrix for the SDP.

"""

d1=self.NumMonomials(n,d);

d2=self.NumMonomials(n,2*d);

G=matrix(d1^2,d2);

idx=0;

for p in self.list:

B=self.VEC(self.Balpha(p,d,self.Rng.gens()));

for j in range(0,d1^2):

G[j,idx]=B[j,0];

idx+=1;

return G;

def Constraints(self,n,d):

"""

Generates the constraints for the SDP.

"""

d1=self.NumMonomials(n,d);

d2=self.NumMonomials(n,2*d);

A=matrix(RR,d1,d2);

A[0,0]=1;
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b=matrix(RR,d1,1)

b[0]=1;

h=matrix(RR,d1,d1,0);

return [A,b,h]

def VEC(self,M):

"""

Arranges the columns of the matrix M in a long

column matrix.

"""

r=M.nrows();

c=M.ncols();

V=matrix(r*c,1);

for i in range(0,r):

for j in range(0,c):

V[i*r+j]=M[j,i];

return V;

def PolyCoefFullVec(self):

"""

Returns the coefficients matrix, corresponding

to the output of Balpha function.

"""

f=self.polynomial

c=matrix(RR,len(self.fullpolynomial.coefficients()),1)

fmono=f.monomials();

fcoef=f.coefficients()

idx=0;

for p in fmono:
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c[self.list.index(p)]=fcoef[idx];

idx+=1;

return c;

def Matrix2CVXOPT(self,M):

"""

Converts a Sage matrix into a matrix acceptable for

the CvxOpt package.

"""

n=M.ncols();

m=M.nrows();

CM=[];

for j in range(n):

tmp=[];

for i in range(m):

CM.append(M[i,j]);

CC=Mtx(array(’d’, CM), (m,n))

return CC

def f_sos(self):

"""

The main function to compute the lower bound for an

even degree polynomial, using Semidefinite Program.

"""

f=self.polynomial;

n=self.number_of_variables;

d=self.total_degree;

if d%2==1:

print ’An odd degree polynomial can not be sos.’;
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return 0;

d=d/2;

c=self.Matrix2CVXOPT(self.PolyCoefFullVec());

G=[self.Matrix2CVXOPT(-self.ConstructSDPMat(n,d))];

Ab=self.Constraints(n,d);

H=[self.Matrix2CVXOPT(Ab[2])];

A=self.Matrix2CVXOPT(Ab[0]);

B=self.Matrix2CVXOPT(Ab[1]);

start = time();

start2=clock();

sol = solvers.sdp(c, Gl=A, hl=B, Gs = G, hs = H);

elapsed = (time() - start);

elapsed2 = (clock()-start2);

self.fsos = max(sol[’dual objective’],sol[’primal objective’]);

self.Info={"sos":self.fsos, "Wall":elapsed, "CPU":elapsed2};

if sol[’status’]!=’optimal’:

self.Info[’status’]= ’Infeasible’;

else:

self.Info[’status’]= ’Optimal’;

return self.fsos;

C.2 Sample Usage

The following is a sample code, written for Sage to use the packages GlOptGeoPrg

and SosTools. This sample code generates a random polynomial with real coefficients

of degree 2d on n variables.

n=4; #number of variables

d=3; #half degree of the polynomial

# Max Number of Monomials:
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numMono=factorial(n+2*d-1)/(factorial(n)*factorial(2*d-1));

R=PolynomialRing(RR,’x’,n);

diagPoly=sum(p^(2*d) for p in R.gens());

f=diagPoly+R.random_element(2*d-1,randint(1,numMono/2));

print ’f=’,f;

POLY=GlOptGeoPrg(f);

POLY.f_gp();

print POLY.Info;

POLYS=SosTools(f);

POLYS.f_sos();

print POLYS.Info;

Sample Output:

f= x0^6 + x1^6 + x2^6 + x3^6 + x1^4*x2 - x0*x1*x2^3 - 2*x0^3*x1*x3 -

x1^4*x3 - x0^2*x1*x2*x3 + x0*x1*x2*x3^2 - 17*x0^2*x1^2 + 78*x1^4 +

6*x1*x2^2*x3 + x0*x1*x3^2 - 47*x0*x1*x2 - x0*x1*x3 - 2*x1^2*x3 + x1

pcost dcost gap pres dres

0: 0.0000e+00 1.4433e+01 5e+00 1e+00 9e-01

1: 6.8148e+00 1.3350e+01 8e-01 7e-01 2e+00

2: -3.1920e+00 8.0402e+00 7e-01 1e+00 3e-01

3: 5.1626e+00 8.3013e+00 8e-02 3e-01 1e+00

4: 6.8078e+00 8.0053e+00 2e-02 1e-01 4e-01

5: 7.8132e+00 7.9724e+00 1e-03 1e-02 8e-02

6: 7.9571e+00 7.9692e+00 5e-05 1e-03 1e-02

7: 7.9689e+00 7.9691e+00 6e-07 2e-05 3e-04

8: 7.9691e+00 7.9691e+00 6e-09 2e-07 4e-06

9: 7.9691e+00 7.9691e+00 6e-11 2e-09 4e-08
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Optimal solution found.

{’Wall’: 0.035673141479492188, ’status’: ’Optimal’, ’CPU’:

0.030000000000001137, ’gp’: -2890.3788408942573}

pcost dcost gap pres dres k/t

0: 0.0000e+00 -2.7313e+01 2e+03 8e+00 2e+00 1e+00

1: -1.2955e+01 -1.8073e+01 5e+02 2e+00 5e-01 3e+00

2: -8.6965e+00 -9.2183e+00 1e+02 7e-01 1e-01 2e+00

3: -2.0646e+01 -1.9963e+01 1e+02 3e-01 7e-02 2e+00

4: -2.9934e+01 -2.9485e+01 7e+01 2e-01 4e-02 1e+00

5: -4.4318e+01 -4.3155e+01 1e+02 1e-01 3e-02 2e+00

6: -5.5988e+01 -5.5383e+01 8e+01 8e-02 2e-02 9e-01

7: -7.1915e+01 -7.1160e+01 8e+01 5e-02 1e-02 9e-01

8: -7.7926e+01 -7.7239e+01 8e+01 4e-02 8e-03 8e-01

9: -7.7956e+01 -7.7282e+01 8e+01 4e-02 8e-03 8e-01

10: -1.0257e+02 -1.0211e+02 4e+01 1e-02 3e-03 5e-01

11: -1.0477e+02 -1.0421e+02 5e+01 1e-02 3e-03 6e-01

12: -1.1813e+02 -1.1789e+02 2e+01 6e-03 1e-03 3e-01

13: -1.2763e+02 -1.2760e+02 3e+00 6e-04 1e-04 3e-02

14: -1.2877e+02 -1.2876e+02 4e-01 8e-05 2e-05 5e-03

15: -1.2895e+02 -1.2895e+02 6e-03 1e-06 3e-07 7e-05

16: -1.2895e+02 -1.2895e+02 3e-04 7e-08 1e-08 4e-06

17: -1.2895e+02 -1.2895e+02 7e-06 2e-09 3e-10 9e-08

Optimal solution found.

{’Wall’: 7.7809391021728516, ’status’: ’Optimal’, ’sos’:

-128.95264644582485, ’CPU’: 7.7700000000000102}
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[2] E. Artin. Über die Zerlegung definiter Funktionen in Quadrate. Abh. math. Sem.

Hamburg, (5):100–115, 1927.

[3] S. Basu, R. Pollack, and M. F. Roy. Algorithms in Real Algebraic Geometry, volume 10

of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin Heidelberg,

2003.

[4] E. Beckenstein, L. Narici, and C. Suffel. Topological Algebras, volume 24 of North-

Holland Math. Stud. Elsevier Sci. Publ., Amsterdam, 1977.

[5] M. Bellare and P. Rogaway. The complexity of approximating a nonlinear program.

Mathematical Programming, 69:429–441, 1993.

[6] C. Berg, J. P. R. Christensen, and C. U. Jensen. A remark on the multidimensional

moment problem. Math. Ann., 243:163–169, 1979.

[7] C. Berg, J. P. R. Christensen, and P. Ressel. Positive definite functions on abelian

semigroups. Math. Ann., 223:253–272, 1976.

[8] C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups,

Theory of Positive Definite and Related Functions, volume 100 of Graduate Texts in

Mathematics. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.

[9] C. Berg and P. H. Maserick. Exponentially bounded positive definite functions. Illi-

nois J. Math., 28:162–179, 1984.

[10] J. Bochnak, M. Coste, and M. F. Roy. Géométrie algébrique réelle, volume 12 of
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Glossary

C
τ

The closure of the set C with respect to the

topology τ .

Cc(X) The algebra of all continuous real valued func-

tions on X with compact support.

C(X) The algebra of all continuous real valued func-

tions on X.

V ∗
τ The set of all τ -continuous linear functionals

L ∶ V Ð→ R.

C∨
τ {L ∈ V ∗

τ ∶ L ≥ 0 on C}.

C∨∨
τ {a ∈ V ∶ ∀L ∈ C∨

τ , L(a) ≥ 0}.

fgp The lower bound for f obtained from its as-

sociated geometric program.

fsos sup{r ∈ R ∶ f − r ∈ ∑R[X]2}.

GMP Generalized Moment Problem.

GP geometric program.

HomR(A,R) The set of all nonzero R-algebra homomor-

phisms from A to R.

M+(K) The set of all finite positive Borel measures

on K.

M(K) The set of all finite signed Borel measures on

K.

N Set of natural numbers: 0,1,2,3, . . . .

Z Set of integer numbers: . . . ,−2,−1,0,1,2, . . . .

Q Set of rational numbers.

R Set of real numbers.
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C Set of complex numbers, R[i].

PD positive definite.

Positivstellensatz A result which relates nonnegativity of a poly-

nomial to its representations.

PSD positive semidefinite.

Psd(K) {a ∈ A ∶ ∀α ∈K â(α) ≥ 0}.

RCF the theory of real closed fields.

SDP semidefinite programming.

∑A2 set of all finite sums of squares of elements of

A.

SMP strong moment property.

SOBS sum of binomial squares.

SOS sum of squares.

Sper(A) The real spectrum of A, i.e., the set of all

orderings of A.

supp M The ideal M ∩ −M where M is a quadratic

module or a preordering.

XA The set of all real valued ring homomorphisms

on A, i.e., Hom(A,R).
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CvxOpt, 99

GPposy, 44, 99

Mathematica, 99

Matlab, 44, 99

Python, 99

Sage, 46, 99

Sdp3-4.0, 99

SosTools, 44, 99

absolute value, 51, 55

algebraically prime model, 91

archimedean, 14, 17

Artin, 1

Banach space, 61
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Cauchy-Schwartz inequality, 58

Chebyshef, 4
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cone, 21

constructible set, 16

contraction, 8

convex, 19

Dahl, Joachim, 99

Delzell, 1

dual

first, 21

second, 21

Dubois, 16

elementary

extension, 92

submodel, 92

exponentially bounded, 52

extension, 8

Fidalgo, 5, 32

formally real, 9

field, 88

Generalized Moment Problem, 97

geometric program, 43

Hölder’s inequality, 61

Haviland, 4, 19, 24

Hilbert, 1, 33

homogenization, 34

Hurwitz, 5, 32, 34, 40

Jacobi, 3, 16, 50, 65

Jensen, 30

K-moment problem, 24

Kadison, 16

Kovacec, 5, 32

Krivine, 2, 9, 16

Kroneker, 67

Krull dimension, 30

Lasserre, 31, 32, 53, 63, 80, 97

Lemma

Urysohn’s, 26, 79

Zorn’s, 9, 25, 88

Marshall, 3, 31

Maserick, 5, 31, 57

measure

Borel, 19, 23, 24

Dirac, 98

Minkowski, 1, 33

model complete, 92

module

T -, 14

∑A2d-, 16
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quadratic, 2, 8

moment problem, 19

Motzkin, 1

natural description, 29

Netzer, 31, 53, 63

NP-hard, 2, 33

ordering, 8

Parrilo, 32

partially ordered ring, 7

positive semidefinite, 32

Positivstellensatz

Abstract, 11

Concrete, 17, 95

posynomial, 43

preordering, 2, 7, 14

preprime, 14

generating, 14

torsion, 15

weakly torsion, 15

presemiprime, 14

Prestel, 9, 16

Puiseux, 94

Putinar, 3

quantifier elimination, 89

real closed field, 10, 88

real closure, 88

real ring, 9

real spectrum, 10

Ressel, 5, 50, 63

Reznick, 5, 32, 40

saturation, 11

Scheiderer, 4, 19, 27, 29

Schmüdgen, 3, 16, 17, 28, 65

semialgebraic, 17

basic closed, 2, 17

semicharacter, 54

seminorm, 20, 74

stable, 29

Stengle, 2

Stieljes, 4

Stirling’s formula, 82

strong moment property, 27

Sturmfels, 32

Tarski, 6, 92

Theorem

Duality, 22

Fidalgo-Kovacek, 35

Hahn-Banach, 53, 77

Haviland, 26

Hilbert’s Basis, 94

Hurwitz-Reznick, 34

Jacobi, 16

Lang’s Homomorphism, 94

Representation, 16, 28

Riesz Representation, 24, 67, 77

Schmüdgen, 18

Separation, 21

Stone-Weierstrass, 74

Tarski-Seidenberg, 94

Tietze Extension, 26

Tychonoff, 15

Wörmann, 17

Topology

Hausdorff, 24

locally convex, 19

locally multiplicatively convex (lmc), 19,

77

metrizable, 20

normable, 20
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patch, 10, 94

spectral, 10, 94

Zariski, 13

universal sentence, 90

Vandenberghe, Lieven, 99

Wörmann, 17

Wagner, 31

weak absolute value, 58

Zariski dense, 13, 75
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