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Abstract. We consider the space of orderings of the field R((x, y)) and the
space of orderings of the field R((x))(y), where R is a real closed field. We
examine the structure of these objects and their relationship to each other. We
define a cyclic 2-structure to be a pair (S, Φ) where S is a cyclically ordered
set and Φ is an equivalence relation on S such that each equivalence class
has exactly two elements. We show that each of these spaces of orderings is
described by a cyclic 2-structure, in a natural way. We also show that if the
real closed field R is archimedean then the space of R-places of these fields is
describable in terms of the cyclic 2-structure.

1. Introduction

For a formally real field K, Sper K denotes the set of orderings of K, MK denotes
the set of R-places of K, and λ : Sper K → MK denotes the natural map. See [3] [15]
[16] or [20] for a more precise description of these objects and for basic terminology
and basic results. K̇ denotes the multiplicative group K\{0}. Sper K and MK are
topological spaces. SperK is a boolean space. The harrison sets

HK(f) := {P ∈ Sper K | f ∈ P}, f ∈ K̇,

form a subbasis for the topology on SperK. MK is compact and hausdorff. λ is
continuous and surjective. The topology on MK is the quotient topology.

For what we do here, knowledge of abstract spaces of orderings [2] [16] is optional.
All we need is the definition of the space of orderings of a formally real field. For
f ∈ K̇, define f : Sper K → {−1, 1} by

f(P ) :=

{
1 if f ∈ P,

−1 if f ∈ −P
.

The topology on Sper K is the weakest topology making the functions f continu-
ous, giving {−1, 1} the discrete topology. The space of orderings of K is the pair
(Sper K,GK), where GK is the group of all functions f , f ∈ K̇.

Orderings and real places arise most naturally in the context of real algebraic
geometry [2] [4] [5] [13] [17] [20]. Let R be a real closed field, e.g., take R = R. The
formal power series ring R[[x1, . . . , xd]] also arises naturally in this context, as the
completion of the coordinate ring of a d-dimensional algebraic variety over R at
a non-singular point. R((x1, . . . , xd)) denotes the field of fractions of the integral
domain R[[x1, . . . , xd]].
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We restrict our attention here to the case d = 2. Orderings on R((x, y)) and on
R((x, y))an, the field of fractions of the ring R[[x, y]]an of convergent power series, are
considered already in [1]. More recently, in [8], orderings on R((x, y)) are exploited
to prove a representation result for polynomials non-negative on a compact basic
semialgebraic subset of R2, extending an earlier such result in [22].

Our main results are Theorems 5.1 and 6.5. The study of orderings and R-places
on R((x, y)) reduces by an application of the Weierstrass Preparation Theorem,
see Theorem 2.1, to the study of orderings and R-places on R((x))(y). It is a
consequence of this that the structure of the space of orderings and of the space
of R-places of these two fields are closely interrelated. We introduce the idea of a
cyclic 2-structure in Section 5 and show, in Theorem 5.1, how each of these spaces
of orderings is described by a cyclic 2-structure, in a natural way. In Section 6,
which is the most technically demanding section in the paper, we apply ideas from
[14] to understand the fibers of the map λ in this situation. We explain, in Theorem
6.5, how the space of R-places is describable in terms of the cyclic 2-structure if R
is archimedean. This is an interesting result, more especially so in view of the well-
known fact that the space of R-places is typically not describable in terms of the
space of orderings. We give an example, see Example 6.6, showing how Theorem
6.5 fails if R is not archimedean.

Denote by R((x, y))alg the field of fractions of the ring R[[x, y]]alg of algebraic
power series [5, Ch. 8]. We do not consider R((x, y))an or R((x, y))alg explicitly in
what we do here. But it still needs to be mentioned that everything we do here for
R((x, y)) carries over with suitable modifications to these fields.

In [11] and [12] it is asked if the pp conjecture holds for the space of orderings
of R((x, y)). We do not consider this question, although the results we do obtain
might provide the basis for an eventual answer to this question.

2. preparation theorem and factorization

Throughout the paper R denotes a real closed field. The results in Section 2 are
well-known and are valid for any field R.

A monic polynomial f ∈ R[[x]][y] of the form

f = yn +
n−1∑

i=0

ai(x)yi, ai(x) ∈ R[[x]], x | ai(x), 0 ≤ i < n, n ≥ 0

will be called distinguished.

Theorem 2.1. [Preparation Theorem] Every non-zero element f ∈ R[[x, y]] has a
unique decomposition

f = uxkf?,

where u is a unit in R[[x, y]], k ≥ 0 and f? is a distinguished polynomial in R[[x]][y].

See [23, Cor 1, p. 145] for the proof. See [23, Cor. 1, p. 131] for a description of
the units.

Remark 2.2. The field R((x)) is a complete discrete valued field with residue field
R. Let R((x))ac denote the algebraic closure of R((x)) and let v denote the unique
extension of the valuation to R((x))ac.

(1) Let f ∈ R[[x]][y] be distinguished, f = yn +
∑n−1

i=0 ai(x)yi. If r ∈ R((x))ac

and v(r) ≤ 0 then v(rn) < v(aiy
i), i = 1, . . . , n − 1, so v(f(r)) = v(yn) ≤ 0. In

particular, all roots of f have positive value.
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(2) Conversely, if f ∈ R((x))[y] is monic and all the roots of f have positive value
then f is distinguished (because the coefficients a1, . . . , an−1 of f are elementary
symmetric functions of the roots, so they also have positive value).

(3) In particular, if f ∈ R((x))[y] is monic and irreducible and one root of f has
positive value then all roots of f have positive value (because the various roots are
conjugate to each other, so they have the same value) so f is distinguished.

Lemma 2.3. If f ∈ R[[x]][y] is distinguished, then the following conditions are
equivalent:

(1) f is irreducible in R[[x, y]],
(2) f is irreducible in R[[x]][y],
(3) f is irreducible in R((x))[y].

Proof. Since R[[x]] is a UFD and f has content 1 (because it is monic), (2) ⇔ (3) is
clear. (1) ⇒ (2): Suppose f is irreducible in R[[x, y]] and f = gh, g, h ∈ R[[x]][y].
Scaling by a unit of R[[x]] we may assume g and h are monic so, by Remark 2.2,
parts (1) and (2), g and h are distinguished. One of g, h is a unit in R[[x, y]], say g
is a unit in R[[x, y]]. Since g is also distinguished, this forces g = 1, i.e., g is already
a unit in R[[x]][y]. (2) ⇒ (1): By [23, Cor. 2, p. 146], the ring homomorphism
R[[x]][y] → R[[x, y]]/(f) induced by the inclusion R[[x]][y] ⊆ R[[x, y]] is surjective
and has kernel equal to the principal ideal in R[[x]][y] generated by f (which, by
abuse of notation, we also denote by (f)), so R[[x, y]]/(f) ∼= R[[x]][y]/(f). We know
that R[[x]][y] is a UFD. If f is irreducible in R[[x]][y] then the principal ideal in
R[[x]][y] generated by f is prime, so the principal ideal in R[[x, y]] generated by f
is also prime. This implies that f is irreducible in R[[x, y]]. ¤

The ring R[[x, y]] is a UFD [23, Th. 6, p. 148]. This can be deduced from the
fact that R[[x]][y] is a UFD, by combining Theorem 2.1 and Lemma 2.3. Each
non-zero f ∈ R[[x, y]] factors uniquely as

f = uxkf1 · · · fm

where u is a unit of R[[x, y]], k ≥ 0, m ≥ 0 and each fj ∈ R[[x]][y] is distinguished
and irreducible.

We record the following consequence of the proof of Lemma 2.3. See also [23,
Cor., p. 149].

Corollary 2.4. If f ∈ R[[x]][y] is distinguished and irreducible, then the field of
fractions of R[[x, y]]/(f) is canonically isomorphic to R((x))[y]/(f).

3. the conjugation map

The field R((x)) has two orderings, one making x > 0, and one making x < 0.
Denote the associated real closures by R1 and R2, respectively. Any finite extension
L of R((x)) is a complete discrete valued field with residue field R or C, where
C := R(

√−1). If the residue field is R then L has two orderings, by the Baer-Krull
Theorem [16, Sect. 1.3] [17, Sect. 1.5] . If the residue field is C then

√−1 ∈ L and
L has no orderings. Suppose now that L = R((x))[y]/(f), where f ∈ R((x))[y] is
irreducible. Suppose L is formally real, i.e., the prime ideal (f) is real. Orderings
of L correspond to roots of f in R1∪̇R2 (disjoint union). Either there are two roots
of f in R1 and none in R2 or two in R2 and none in R1 or one in R1 and one in R2.

Putting it another way, if r ∈ R1∪̇R2 and f denotes the minimal polynomial
of r over R((x)), then f has another root r′ ∈ R1∪̇R2. In this way we have a
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well-defined map r 7→ r′ from R1∪̇R2 onto itself, which we call the conjugation
map.

By Puiseux’s Theorem, each r ∈ R1 (resp., r ∈ R2) is expressible as

r =
∞∑

i=k

aix
i/d (resp., r =

∞∑

i=k

ai(−x)i/d),

ai ∈ R, d := the degree of the minimal polynomial of r over R((x)). The integer d
is also described as the least common denominator of the fractions i/d with ai 6= 0.

By Kummer Theory, for r =
∑

aix
i/d, as above, the conjugates of r over R((x))

(or equivalently, over C((x))) have the form
∑

aiω
ixi/d where ω is a d-th root of

1. If d is even, −1 is a d-th root of 1, and r′ =
∑

ai(−1)ixi/d. If d is odd then
µ := − (−x)1/d

x1/d is a d-th root of 1, and r′ =
∑

aiµ
ixi/d =

∑
ai(−1)i(−x)i/d. Similar

formulas hold for r =
∑

ai(−x)i/d.
In summary, the map r 7→ r′ from R1∪̇R2 to R1∪̇R2 is given by

∑
aix

i/d 7→
∑

ai(−1)ixi/d,
∑

ai(−x)i/d 7→
∑

ai(−1)i(−x)i/d

if d is even and∑
aix

i/d 7→
∑

ai(−1)i(−x)i/d,
∑

ai(−x)i/d 7→
∑

ai(−1)ixi/d

if d is odd. If d = 1 then r ∈ R((x)) so there is one copy of r in R1 and one in R2

and, in this case, the map r 7→ r′ just interchanges these two copies.

Remark 3.1. If R = R, the irreducible polynomial f ∈ R((x))[y] is distinguished
and the coefficients of f are analytic functions of x in a neighborhood of 0 then
y = r and y = r′ (where r, r′ are the real conjugate roots of f) are precisely the real
half-branches of the plane curve f(x, y) = 0 at (0, 0). The same is true for R 6= R,
if the irreducible polynomial f is distinguished and the coefficients of f are Nash
functions of x in a neighborhood of 0.

Theorem 3.2. [Continuity of Conjugation] For each r ∈ R1∪̇R2 and each neigh-
borhood U of {r, r′} in R1∪̇R2, there is a neighborhood V of {r, r′} in R1∪̇R2

contained in U and invariant under conjugation.

Here, the topology on R1∪̇R2 is the disjoint union topology, giving each Ri the
order topology.

Proof. Since r belongs to R1 or R2 and, similarly, r′ belongs to R1 or R2, there
are four cases to consider. We consider the case r ∈ R1, r′ ∈ R1. The other cases
are similar. Thus r =

∑
aix

i/d, r′ =
∑

ai(−1)ixi/d. Choose V = V1 ∪ V2 where
V1 := {s ∈ R1 | v(s − r) > γ} and V2 := {s ∈ R1 | v(s − r′) > γ}, γ large
enough so that V ⊆ U and d is the least common denominator of the fractions
{i/d | i/d < γ, ai 6= 0}. The point is that if s ∈ V then s coincides with either r or
r′ up to terms of value ≥ γ and the degree of s is some multiple of d. If the degree
of s is an even multiple of d then s′ is in the same part of V as s. If the degree of
s is an odd multiple of d then s′ is in the other part of V . ¤

Remark 3.3. Consider the intervals V −
i , V +

i , i = 1, 2 defined by V −
1 = {s ∈ V1 |

s < r}, V +
1 = {s ∈ V1 | s > r}, V −

2 = {s ∈ V2 | s < r′}, V +
2 = {s ∈ V2 | s > r′}.

For each pair V ε
i , V δ

j , i, j ∈ {1, 2}, ε, δ ∈ {+,−}, there are elements of V ε
i which

are mapped to V δ
j by conjugation.
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4. orderings

Let (S, <) be an ordered set. A cut of (S,<) is a pair (A,B) where A,B are
subsets of S, A ∪B = S, and A < B. A cut said to be proper if A and B are both
non-empty. The two principal cuts determined by an element r ∈ S are

r− := ({a | a < r}, {b | b ≥ r}) and r+ := ({a | a ≤ r}, {b | b > r}).
The set of cuts of an ordered set S = (S, <) will be denoted by C(S). The following
result appears to be well-known.

Lemma 4.1. For any ordered set S, the set of cuts of S equipped with its natural
order topology is a boolean space.

Proof. Define Ψ : C(S) → {0, 1}S by

Ψ(A,B)(r) =

{
0 if r ∈ A

1 if r ∈ B
.

One checks that Ψ is injective and that the topology on C(S) is induced by Ψ and
the product topology on {0, 1}S , giving {0, 1} the discrete topology. It follows that
C(S) is totally disconnected. In view of Tychonoff’s Theorem, to show C(S) is
compact it suffices to show the image of C(S) under Ψ is closed in {0, 1}S . This is
straightforward to check. ¤
Remark 4.2. For a formally real field K, the set Sper K(y) is naturally identi-
fied with the disjoint union of the sets Sper R(y), where R runs through the set of
real closures of K [9, Lemma 8]. The natural bijection ∪̇R Sper R(y) → SperK(y)
is continuous, where ∪̇R Sper R(y) is given the topology of the disjoint union. If
Sper K is finite then the disjoint union is compact, and the bijection is a homeomor-
phism. The orderings of R(y) are naturally identified with the cuts of R [9] [10].
The topology on C(R) induced by the harrison topology on Sper R(y) coincides
with the order topology on C(R).

Let R1, R2 be the two real closures of R((x)) as defined in the previous section.
Consider the topological space of orderings of the field R((x))(y). By Remark 4.2
we have

Sper R((x))(y) = Sper R1(y) ∪̇ Sper R2(y) = C(R1) ∪̇C(R2).

Set Ij := {r ∈ Rj | v(r) > 0}, j = 1, 2. Here, v denotes the extension to Rj of
the standard discrete valuation on R((x)), i.e., Ij is the set of elements of Rj which
are infinitely small relative to elements of R.

We will prove that SperR((x, y)) is identified with C(I1)∪̇C(I2). We begin by
proving some preliminary results. Viewing R((x))(y) as a subfield of R((x, y)), we
have the natural continuous restriction map ρ : Sper R((x, y)) → Sper R((x))(y).

Lemma 4.3. The map ρ is injective.

Proof. Suppose that P1, P2 are two different orderings of R((x, y)). There exists
f ∈ R[[x, y]] which separates P1 and P2. By the Preparation Theorem f = uxkf?,
where f? is a distinguished polynomial of R[[x]][y], k ≥ 0, and u is a unit of R[[x, y]].
u has the form u = a + w, a ∈ R, a 6= 0, w an element of the maximal ideal of
R[[x, y]]. If a > 0 then u is a square, and conversely [17, Prop. 1.6.2]. It follows
that u is ± a square so the sign of u is the same at P1 and P2. Consequently, the
element xkf? ∈ R[[x]][y] is also a separating element for P1 and P2. ¤
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A unit of R[[x, y]] having the form u = a + w, a ∈ R, a > 0, w an element of the
maximal ideal of R[[x, y]], will be referred to as a positive unit of R[[x, y]].

Lemma 4.4. The image of Sper R((x, y)) under ρ is a subset of C(I1)∪̇C(I2)

Proof. Let P be an ordering of R((x, y)). The restriction of P to R((x))(y) extends
to Rj(y) for j = 1 or 2. Denote this extension by Q. Fix a positive element r ∈ Rj ,
v(r) ≤ 0. r is bounded below by a positive element a of R. (If j = 1, resp., j = 2,
write r = bxk/d+ terms of higher value, resp., r = b(−x)k/d+ terms of higher value,
where b ∈ R, b 6= 0. Take a = b/2.) a ± y is a unit and a square in R[[x, y]] so
a ± y ∈ P . It follows that r ± y = (r − a) + (a ± y) ∈ Q. Since this is valid for
any positive r ∈ Rj with v(r) ≤ 0, it follows that the cut of Rj determined by Q is
actually a cut of Ij . ¤

Theorem 4.5. The map ρ : Sper R((x, y)) → C(I1)∪̇C(I2) is a homeomorphism.

Proof. In view of Lemmas 4.3 and 4.4 it remains to show that each element of
C(I1)∪̇C(I2) is in the image of ρ. We begin by considering the case of a principal cut
in I1 determined by r ∈ I1. The general case will follow from this by a compactness
argument. Let f be the minimal polynomial of r over R((x)). By Remark 2.2 (3), f
is distinguished. By Lemma 2.3, f is irreducible in R[[x, y]]. Since R[[x, y]] is UFD,
the localization R[[x, y]](f) is a discrete valuation ring of R((x, y)) with residue field
equal to the field of fractions of R[[x, y]]/(f) which, by Corollary 2.4, is canonically
identified with R((x))[y]/(f). The latter field is a complete discrete valued field
with exactly 2 orderings. The ordering we are interested in is the ordering, call it
P , on R((x))[y]/(f) induced by the embedding of R((x))[y]/(f) into R1 defined by
y +(f) 7→ r. By the Baer-Krull Theorem, there are exactly 2 orderings of R((x, y))
compatible with the discrete valuation ring R[[x, y]](f) and pushing down to the
ordering P . The two orderings of R((x))(y) obtained from these two orderings by
restriction are precisely the two orderings of R((x))(y) compatible with the discrete
valuation ring R((x))[y](f) and pushing down to the ordering P on the residue field
R((x))[y]/(f). These, in turn, are precisely the two orderings coming from the two
principal cuts of R1 corresponding to r.

Let i1 : Sper R1(y) ↪→ SperR((x))(y) be the canonical restriction. For any
non-principal proper cut (A,B) of I1 consider the family of sets

H(r1, r2) = ρ−1(i1(HR1(y)(y − r1) ∩HR1(y)(r2 − y))),

where HR1(y)(y−r1) and HR1(y)(r2−y) are harrison subbasis sets of the topological
space Sper R1(y), r1 ∈ A, r2 ∈ B. Since the maps ρ and i1 are continuous, the sets
H(r1, r2) are closed, and they are non-empty because H(r1, r2) contains the inverse
image of the orderings of R((x))(y) determined by the principal cuts associated to
r, for every r1 < r < r2. Note that if r1, s1 ∈ A and r2, s2 ∈ B then H(r1, r2) ∩
H(s1, s2) = H(max{r1, s1},min{r2, s2}). Thus the family is closed under finite
intersections. By compactness of the space of orderings this family has a non-empty
intersection.

For improper cuts, consider the families:

H(r1) = ρ−1(i1(HR1(y)(y − r1))), r1 ∈ I1

and
H(r2) = ρ−1(i1(HR1(y)(r2 − y))), r2 ∈ I1.
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Each of these families is a nested family of non-empty closed sets. By compactness,
the intersection of each of these families is non-empty.

This shows that the image of ρ contains C(I1). A similar argument shows that
the image of ρ contains C(I2). ¤

Here is a less cluttered description of the image of ρ:

Corollary 4.6. The image of Sper R((x, y)) under ρ is equal to the set of orderings
P of R((x))(y) satisfying a± y ∈ P for all positive a ∈ R.

Proof. Suppose P is an ordering of R((x))(y) satisfying a ± y ∈ P for all positive
a ∈ R. P extends to an ordering Q of Rj(y) for j = 1 or 2. The argument in
the proof of Lemma 4.4 shows that the cut of Rj determined by Q is actually a
cut of Ij . Theorem 4.5 then implies P is in the image of ρ. The other inclusion
is immediate from the fact that for any positive a ∈ R, a ± y is a positive unit in
R[[x, y]], so it is a square. ¤
Remark 4.7. Using the Preparation Theorem together with the fact that every
unit of R[[x, y]] is ± a square, we see that the homomorphism GR((x))(y) → GR((x,y))

induced by the inclusion R((x))(y) ⊆ R((x, y)) is surjective. Combining this with
Corollary 4.6, we see that (Sper R((x, y)), GR((x,y))) is identified via ρ with the
subspace (Y, GR((x))(y)|Y ) of (Sper R((x))(y), GR((x))(y)), where

Y := ∩a∈R,a>0(HR((x))(y)(a + y) ∩HR((x))(y)(a− y)).

See [16, p. 32-33] for basic material on subspaces.

5. cyclic 2-structures

By a cyclically ordered set we mean a set S equipped with a ternary relation
such that

(1) ∀ a, b, c ∈ S a < b < c ⇒ a 6= b 6= c 6= a.
(2) ∀ a, b, c ∈ S a < b < c ⇒ b < c < a.
(3) ∀ c ∈ S, the set S\{c} is totally ordered via a < b iff a < b < c.1

For a cyclically ordered set S and a, b ∈ S, a 6= b, the interval (a, b) in S is defined
to be the totally ordered set {x ∈ S | a < x < b}. Cuts of S are defined to be cuts
of intervals in S identified in the obvious way. The set of all cuts of a cyclically
ordered set S, denoted C(S), is itself a cyclically ordered set. It is a boolean space
which is identified naturally with the boolean space consisting of all cuts of the
totally ordered set S\{c} for any c ∈ S; see Lemma 4.1.

By a cyclic 2-structure we mean a pair (S, Φ) consisting of a cyclically ordered set
S together with an equivalence relation Φ on S such that each equivalence class has
exactly two elements. A priori no connection between the equivalence relation and
the ordering is assumed. For r ∈ S, denote by r′ the other element of the equivalence
class of r. We refer to r′ as the conjugate of r. The mapping from S to S defined
by r 7→ r′ will be called the conjugation map. It is idempotent with no fixed points.
Each equivalence class {r, r′} determines two arcs (r, r′) = {s ∈ S | r < s < r′} and
(r′, r) = {s ∈ S | r′ < s < r} and two functions f1, f2 : C(S) → {−1, 1} (called the
atoms associated to equivalence class {r, r′}) defined by

f1(x) :=

{
1 if x is a cut of (r, r′),
−1 if x is a cut of (r′, r)

1The idea of a cyclically ordered set is obviously not new. See [19] and [21].
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and f2 := −f1. Note: The principal cuts r+ and r′− are to be viewed as cuts
of (r, r′). Similarly, the principal cuts r− and r′+ are to be viewed as cuts of
(r′, r). Denote by G(S,Φ) the group of functions f : C(S) → {−1, 1} generated by
the constant functions 1,−1 and the various atoms determined from the various
equivalence classes of S. A pair (X,G), where X is a set and G is a group of
functions from X to {−1, 1}, is said to be described by the cyclic 2-structure (S, Φ)
if there exists a bijection p : X → C(S) such that G = {f ◦ p | f ∈ G(S,Φ)}.
Theorem 5.1. For any real closed field R, the spaces of orderings of the fields
R((x))(y) and R((x, y)) are described by cyclic 2-structures in a natural way.

Proof. We first give the proof for R((x))(y). Let R1, R2 be the two real clo-
sures of R((x)) defined as in Section 3. Define S to be R1∪̇R2∪̇{−∞,∞} (dis-
joint union) where −∞ and ∞ are new symbols, and order S cyclically so that
∞ < R1 < −∞ < R2 < ∞. Here, the ordering on R1 is taken to be the opposite
of the usual one and the ordering on R2 is taken to be the usual one. C(S) is iden-
tified with C(R1)∪̇C(R2) which, as was explained in Section 4, is identified with
Sper R((x))(y). Set up the equivalence relation on S so that ∞ and −∞ are in the
same class (note that ±x are the two associated atoms) and, for r ∈ S, r 6= ±∞,
r′ = the conjugate of r described in Section 3 (recall that r and r′ have the same
minimal polynomial f over R((x)), and note that ±f are the two associated atoms).
Any non-zero u ∈ R((x)) is, up to a square, either ±1 or ±x. An irreducible f of
R((x))[y] is, after scaling by a suitable non-zero element of R((x)), a monic irre-
ducible. f is either real or non-real. If f is real it is the minimal polynomial over
R((x)) of some unique pair {r, r′} as above. If f is non-real then f is a sum of two
squares in R((x))[y] (see [17, p. 19]), so f does not contribute to GR((x))(y) in this
case.

The proof for R((x, y)) is similar. We take S = I1∪̇I2∪̇{−∞,∞} (disjoint union),
where Ii ⊆ Ri is the set of infinitesimal elements of Ri, i = 1, 2, notation as in
Section 4. We order S cyclically so that ∞ < I1 < −∞ < I2 < ∞. Here, the
ordering on I1 is taken to be the opposite of the usual one and the ordering on I2 is
taken to be the usual one. C(S) is identified with C(I1)∪̇C(I2) which, by Theorem
4.5, is identified with Sper R((x, y)). Set up the equivalence relation on S as in the
previous paragraph. For any unit u of R[[x, y]], u is one of the constant functions
±1. An irreducible f of R[[x, y]] is (up to a unit) either x or a distinguished
irreducible. In the latter case, f is real or non-real. If f is real it is the minimal
polynomial over R((x)) of some unique pair {r, r′} as above. If f is non-real then
f is a sum of two squares in R[[x]][y], so f does not contribute to GR((x,y)). ¤
Remark 5.2. The cyclic 2-structures (S, Φ) defined in the proof of Theorem 5.1
satisfy various additional properties. There are the constraints provided by Theo-
rem 3.2 and Remark 3.3. There are variants of Theorem 3.2 and Remark 3.3 which
hold with {r, r′} replaced by {∞,−∞}. There are also constraints coming from
the fact that (C(S), G(S,Φ)) is the space of orderings of a field, so it is a space
of orderings, i.e., it satisfies axioms AX1, AX2 and AX3 (see [16, p. 21-22]) or,
equivalently, axioms (α), (β) and (γ) (see [16, p. 26]).

6. Orderings and R-places

Let K be a formally real field, SperK the topological space of orderings of K,
MK the space of R-places of K, λ : Sper K → MK the natural map. Recall that λ
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is continuous and surjective [15] [16] [20]. A subset Y of SperK is called a fan if
Y 6= ∅ and every character χ of the group K̇/

⋂{Ṗ | P ∈ Y } such that χ(−1) = −1
is a signature of some ordering P ∈ Y . Here, Ṗ := P\{0}. A fan Y ⊆ Sper K is
said to be trivial if contains at most 2 orderings. The stability index s(K) of K
is defined as the maximum n ∈ N such that there exists a fan Y ⊆ Sper K which
contains 2n orderings (or ∞ if no such finite n exists). There are various equivalent
definitions of the stability index; see [6] and [7] or [2] or [15] or [16].

Interest in the stability index derives, in no small part, from its application to
minimal generation of semialgebraic sets and semianalytic sets. This is explained
in detail in [2]. The following result is well-known.

Theorem 6.1.
(1) The stability index of R((x))(y) is equal to 2.
(2) The stability index of R((x, y)) is equal to 2.

Proof. Any finite extension L of R((x)) which is formally real has two orderings,
so has stability index 1. It follows from this using [6, Satz 4.6] (see also [2, Th. 2.7,
Ch. 6]) that the stability index of R((x))(y) is at most 2. (Note: There is a misprint
in the statement of [6, Satz 4.6]; s(K) should be s(F ).) There are lots of 4-element
fans in Sper R((x, y)), e.g., if f ∈ R[[x, y]] is an irreducible which is distinguished
and real, the orderings of R((x, y)) compatible with the DVR R[[x, y]](f) form a
4-element fan.
Claim: For any fan Y in SperR((x, y)), the image Y ′ of Y under the natural
embedding Sper R((x, y)) ↪→ SperR((x))(y) is a fan in Sper R((x))(y). Consider
the group homomorphism

ι : ˙R((x))(y)/ ∩ {Ṗ ′ | P ′ ∈ Y ′} → ˙R((x, y))/ ∩ {Ṗ | P ∈ Y }
induced by the inclusion R((x))(y) ⊆ R((x, y)). Exploiting the Preparation Theo-
rem and the fact that each unit of R[[x, y]] is ± a square, we see that ι is surjective.
ι is clearly injective. Using these facts together with the fact that Y is a fan we see
that Y ′ is also a fan. This proves the claim.

Putting all these things together yields 2 ≤ s(R((x, y))) ≤ s(R((x))(y))) ≤ 2, so
s(R((x, y))) = s(R((x))(y))) = 2. ¤

By the Baer-Krull Theorem, for each ξ ∈ MK , the fiber λ−1(ξ) is a fan, and the
elements of λ−1(ξ) are in one-to-one correspondence with characters of the group
V/2V , where V denotes the value group of the valuation associated to λ. If the
stability index of K is equal to n, then every fiber λ−1(ξ) contains at most 2n

elements.

Corollary 6.2. For K equal to R((x))(y) or R((x, y)), the fibers λ−1(ξ) of the map
λ : Sper K → MK have at most 4 elements.

It follows from Corollary 6.2 that the mapping λ is either 1-1, 2-1, or 4-1. At
which points is it 1-1? At which points is it 2-1? At which points is it 4-1? We work
now to develop a refined version of Corollary 6.2, see Theorem 6.4 below, which
answers these questions.

To understand the map λ : Sper R((x, y)) → MR((x,y)), it suffices to understand
the map λ : Sper R((x))(y) → MR((x))(y). We explain this now.
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Lemma 6.3. For any ordering P of R((x, y)), the value group of the valuation of
R((x, y)) associated to P coincides with the value group of the valuation of R((x))(y)
associated to the restriction of P to R((x))(y).

Proof. Any positive unit of R[[x, y]] has the form a+w where a is a positive element
of R and w is an element of the maximal ideal of R[[x, y]]. For any n ∈ N, 1

n± w
a is a

unit and a square in R[[x, y]], so 1
n± w

a ∈ P , i.e., vP (w
a ) > 0, i.e., vP (a+w) = vP (a),

where vP denotes the valuation of R((x, y)) associated to P . The result follows from
this, using Theorem 2.1. ¤

Consider now the commutative diagram

SperR((x, y)) // Sper R((x))(y)

MR((x,y)) //
²²

λ

MR((x))(y),
²²

λ

the horizontal maps coming from the inclusion R((x))(y) ⊆ R((x, y)). By Lemma
4.3 the upper horizontal map in injective. Coupling this with Lemma 6.3 and the
Baer-Krull Theorem, we see that the lower horizontal map is also injective and, for
each ξ ∈ MR((x,y)), if ξ′ denotes the restriction of ξ to R((x))(y), then the image of
the set λ−1(ξ) under restriction is precisely the set λ−1(ξ′).

We know that Sper R((x))(y) = SperR1(y) ∪̇ Sper R2(y). It follows that any
R-place of R((x))(y) is the restriction of some R-place of the field Rk(y), for k ∈
{1, 2}. We use the notation and results of [14] to describe the relationship between
orderings and R-places of the field R((x))(y).

The field F := R((x)) has exactly two orderings. Fix one of them, and let F be
the real closure of F at this ordering, so F = Rk, k ∈ {1, 2}, and let V and κ be the
associated value group and residue field of F . Note that V = Z×V0 (lexicographic
product) where V0 is the value group of R, and κ = the residue field of R. The
value group and residue field of F are V = Q × V0 and κ = κ. Let P be a fixed
ordering of F (y), let F ′ := F (y) = R((x))(y), and let V ′ and κ′ the associated
value group and residue field of F ′. Let ξ be the R-place determined by P . By the
Baer-Krull Theorem, there are exactly [V ′ : 2V ′] orderings on F ′ having R-place
equal to ξ.

Fix a proper truncation closed embedding p0 : R ↪→ κ((V0)). Such an embedding
always exists [14] [18]. Consider the embedding pk : F ↪→ κ((V )), defined by∑

i aix
i 7→ ∑

i,j aijx
(i,j) if k = 1,

∑
i ai(−x)i 7→ ∑

i,j aijx
(i,j) if k = 2, where

the aij are defined by p0(ai) =
∑

j aijx
j . This is proper truncation closed and

satisfies pk(F ) ⊆ κ((V )). According to [14, Theorem 1.1], P determines a canonical
element φ ∈ κ′((V ′)), and an extension of pk to an order preserving embedding
p : F (y) ↪→ κ′((V ′)) given by y 7→ φ. The group V ′ is generated by V and the
support of φ. The field κ′ is the subfield of R generated by κ and the coefficients
of φ.

For any character χ of V ′/2V ′, the map
∑

aδx
δ 7→ ∑

aδ(−1)χ(δ+2V ′)xδ defines
an automorphism tχ of the field κ′((V ′)). The composite embedding tχ◦p : F (y) →
κ′((V ′)) induces an ordering on F (y). The canonical element of κ′((V ′)) determined
by this ordering is tχ(φ). The restriction of tχ ◦p to F is either p1 or p2. (It is pk iff
χ((1, 0) + 2V ′) = 0.) The orderings on F (y) defined by the composite embeddings
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tχ ◦ p, χ ∈ χ(V ′/2V ′), are distinct and have the same R-place as P . All orderings
on F (y) having the same R-place as P are obtained in this way, as χ runs through
the character group χ(V ′/2V ′).

As explained in [14, Theorem 1.1] there are three cases to consider:
(1) immediate transcendental case;
(2) residue transcendental case;
(3) value transcendental case.
We apply [14, Theorem 5.1], bearing in mind that V = Z×V0 where V0 is divisible,
and κ is real closed. In case (1) V ′/V is countable (but note that V ′/V can be
finite only in the case when R is non-archimedean) and κ′ = κ. In case (2) V ′/V
is finite and κ′ is purely transcendental over κ of transcendence degree 1. Case (2)
cannot occur if R ⊆ R. In case (3) V ′ = W ⊕Zδ where Zδ is infinite cyclic, W ⊇ V ,
W/V finite, and κ′ = κ.

Theorem 6.4. The index [V ′ : 2V ′] is either 1, 2 or 4. In case (1) [V ′ : 2V ′] = 1
or 2 depending on whether or not V ′ is 2-divisible. In case (2) V ′ = 1

dZ×V0, d ≥ 1
and [V ′ : 2V ′] = 2. In case (3) W = 1

dZ× V0, d ≥ 1 and [V ′ : 2V ′] = 4.

In the terminology of [14, Theorem 1.1], φ is distinguished. It has the form w,
w + axγ , or w±xγ , depending on which of the three cases one is considering. Here
w =

∑
wδx

δ, an element of κ((V )). In case (1), φ = w, w /∈ p(F ) but every proper
truncation of w is in p(F ). In case (2), φ = w + axγ , γ ∈ V , a ∈ R\κ, w ∈ p(F )
and wδ = 0 for all δ ≥ γ. In case (3), φ = w± xγ , γ /∈ V , w ∈ p(F ) and wδ = 0 for
all δ > γ. It is a straightforward matter to write down formulas for the characters
of the group V ′/2V ′ in each of the three cases, and also to write down formulas
for each of the power series tχ(φ), χ ∈ χ(V ′/2V ′). In this way, everything we have
done here can be made very explicit.

There is an obvious sufficient condition, expressible in terms of the underlying
cyclic 2-structure (S, Φ), for two orderings P and Q to have the same associated
R-place. In our next theorem we prove that, in the archimedean case, this sufficient
condition is also necessary. This is a nice result, but the proof is rather involved,
as there are many cases and subcases to consider.

Theorem 6.5. Let P and Q be two distinct orderings of R((x))(y) or of R((x, y)).
(1) A sufficient condition for P and Q to have the same associated R-place is

that for each pair of intervals (r1, s1) and (r2, s2) of the cyclically ordered set S
with r1 < P < s1 and r2 < Q < s2, there exists r ∈ S such that r1 < r < s1 and
r2 < r′ < s2.

(2) If the real closed field R is archimedean then the sufficient condition described
in (1) is also necessary.

Proof. It suffices to give the proof for the field R((x))(y).
(1) This is more or less clear. Suppose λ(P ) 6= λ(Q). Using the continuity of λ

plus the fact that the space of R-places is hausdorff, there exist open sets U1 and
U2 in Sper R((x))(y) with P ∈ U1, Q ∈ U2 and λ(U1) ∩ λ(U2) = ∅. Replacing U1

and U2 by smaller open sets if necessary, we may assume Ui is defined by some
interval (ri, si) in S, for i = 1, 2. For any r ∈ S, the principal cuts r−, r+, r′−, r′+
have the same R-place so we must have {r−, r+, r′−, r′+} ∩Ui = ∅, for i = 1 or 2. It
follows that there does not exist r ∈ S such that r1 < r < s1 and r2 < r′ < s2.
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(2) Suppose now that R is archimedean. Thus κ = R, V0 = {0}, V = Z and
V = Q. Suppose λ(P ) = λ(Q) and ri, si are given, i = 1, 2, such that r1 < P < s1

and r2 < Q < s2.
Immediate transcendental case. Suppose the embedding corresponding to P is

given by x 7→ x, y 7→ w, w =
∑

wδx
δ ∈ R((Q)). The other case, where the

embedding corresponding to P is given by −x 7→ x, y 7→ w is similar and will be
omitted. Since Q has the same R-place as P and Q 6= P , (V ′ : 2V ′) = 2. We know
that V ′ is generated over Z by the exponents of the xδ appearing in w, so there is
some highest 2-power, say it is 2`, dividing the denominators of the exponents of
the xδ appearing in w. Thus w has the form w =

∑
wa/bx

a/2`b, with a, b ∈ Z, some
a odd, all b odd. Computing tχ(w) for the non-trivial character χ of V ′/2V ′, we see
that tχ(w) =

∑
wa/b(−1)axa/2`b. The embedding corresponding to Q is given by

(−1)2
`

x 7→ x, y 7→ ∑
wa/b(−1)axa/2`b. There are two cases depending on whether

2` is even (i.e., ` ≥ 1) or 2` is odd (i.e., ` = 0). In either case any sufficiently fine
proper truncation r of w satisfies r1 < r < s1 and r2 < r′ < s2. (We remark that
any proper truncation of w has just finitely many terms.)

Residue transcendental case. Suppose the embedding corresponding to P is given
by x 7→ x, y 7→ w + axγ . The other case, where the embedding corresponding to
P is given by −x 7→ x, y 7→ w + axγ is similar and will be omitted. We know
that V ′ is generated over Z by γ and the exponents appearing in w. (Note that
the series w has just finitely many terms.) Q is the ordering determined by the
embedding (−1)dx 7→ x, y 7→ tχ(w + axγ) where d is defined by V ′ = 1

dZ and χ
is the non-trivial character of V ′/2V ′. There are two cases, depending on whether
d is even or odd. Pick r of the form r = w + a1x

γ , a1 ∈ R. The point is that, in
either case, if we choose a1 sufficiently close to a then r1 < r < s1 and r2 < r′ < s2.

Value transcendental case. The embedding corresponding to P has the form
±x 7→ x, y 7→ w±xγ , so there are four cases to consider. We consider only the case
x 7→ x, y 7→ w + xγ . The other cases are dealt with similarly. V ′ = 1

dZ ⊕ Zγ for
some integer d ≥ 1 and (V ′ : 2V ′) = 4. d is the least common denominator
of the exponents of w, and w is expressible in the form w =

∑
wix

i/d. The
embedding corresponding to Q is given by x 7→ x, y 7→ w − xγ or (−1)dx 7→ x,
y 7→ ∑

wi(−1)ixi/d + xγ or (−1)dx 7→ x, y 7→ ∑
wi(−1)ixi/d − xγ .

Fix an integer ` and take r of the form r = w+xα/2`β where α, β are odd integers
≥ 1. We claim that for an appropriate choice of ` and for α/2`β is sufficiently close
to γ, r ∈ (r1, s1) and r′ ∈ (r2, s2). The choice of ` depends on which case we are
considering. Let 2m be the highest power of 2 dividing d. If Q is given by x 7→ x,
y 7→ w−xγ choose ` = m+1, so r′ = w−xα/2`β . If Q is given by (−1)dx 7→ x and
y 7→ ∑

(−1)iwix
i/d +xγ , take ` = m−1, so r′ =

∑
(−1)iwix

i/d +xα/2`β if d is even,
resp., r′ =

∑
(−1)iwi(−x)i/d + (−x)α/2`β if d is odd. If Q is given by (−1)dx 7→ x

and y 7→ ∑
(−1)iwix

i/d − xγ take ` = m, so r′ =
∑

(−1)iwix
i/d − xα/2`β if d is

even, resp., r′ =
∑

(−1)iwi(−x)i/d − (−x)α/2`β if d is odd. ¤

If the real closed field R is not archimedean then the sufficient condition given
in part (1) of Theorem 6.5 is not necessary.

Example 6.6. We know V = Z × V0 ordered lexicographically. If R is not
archimedean then V0 6= {0}. Fix a proper cut (A,B) of V0 and take γ = (1, γ0)
where A < γ0 < B. Consider the orderings P and Q of R((x, y)) corresponding
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to the embeddings x 7→ x, y 7→ x1/2 + xγ and x 7→ x, y 7→ x1/2 − xγ respectively.
Clearly λ(P ) = λ(Q). Any r ∈ R1 close to P has the form r = x1/2 + ax + · · · for
some a ∈ R, a > 0. Then r′ has the form r′ = x1/2+ax+· · · or r′ = −x1/2+ax+· · · .
In either case, r′ is not close to Q.
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