Lösungen zu den Folien 129, 130

Übung 2:

Berechne alle Hoch- und Tiefpunkte der Funktion $f(x) = \frac{1}{4}x^4 - \frac{2}{3}x^3 - 1.5x^2 + 2$.

Lösung

Die Funktion hat einen Hochpunkt, nämlich bei (0,2) und zwei Tiefpunkte, einen bei $(3,-\frac{37}{4})$ und einen bei $(-1,\frac{17}{12})$.

Es gelten

$$f'(x) = x^3 - 2x^2 - 3x,$$

$$f'' = 3x^2 - 4x - 3.$$

Übung 4:

Die Funktion $f(x) = e^{0.1x-6} \cdot (x^2 - 12x + 36) + 5$ beschreibt den Wassergehalt eines Stausees innerhalb eines Tages (x in Stunden, $0 \le x \le 24$). Zu welchem Zeitpunkt hat der See am wenigsten Wasser? Wie viel Wasser enthält er zu diesem Zeitpunkt? Zu welchem Zeitpunkt hat der See den größten Abfluss?

Lösung:

Zu welchem Zeitpunkt hat der See am wenigsten Wasser? Wie viel Wasser enthält er zu diesem Zeitpunkt? Gefragt ist nach einem Tiefpunkt der Funktion f. Der Stausee hat nach 6 Stunden am wenigsten Wasser, nämlich ein Wassergehalt von 5 (der TP ist also (6, 5)).

Zu welchem Zeitpunkt hat der See den größten Abfluss? Gefragt ist nach dem Minimum der Ableitung von f. Diese hat einen Tiefpunkt zum Zeitpunkt $10\sqrt{2}-14$.

Es gelten

$$f'(x) = \frac{1}{10}e^{0.1x-6}(x^2 + 8x - 84),$$

$$f''(x) = \frac{1}{100}e^{0.1x-6}(x^2 + 28x - 4),$$

$$f'''(x) = \frac{1}{1000}e^{0.1x-6}(x^2 + 48x - 276).$$

Übung 5:

Eine Funktion f hat folgende allgemeine Funktionsgleichung: $f(x) = ax^2 + bx + c$. Wir wissen, dass f(2) = 4 gilt, und dass f bei (1.5, 4.25) einen Hochpunkt besitzt. Bestimme aus diesen Informationen die genaue Funktionsgleichung von f.

Lösung:

Aus der Aufgabenstellung leiten sich die Bedingungen f(2) = 4, f(1.5) = 4.25 und f'(1.5) = 0 ab. Dies führt zum LGS

$$f(2) = 4a+2b+c = 4$$

 $f(1.5) = 2.25a+1.5b+c = 4.25$.
 $f'(1.5) = 3a+b = 0$

Dieses LGS hat die Lösung a=-1,b=3,c=2. Die gesuchte Funktionsgleichung lautet also $f(x)=-x^2+3x+2$.

Übung 6:

An welchen Punkten in \mathbb{R} ist die Funktion f(x) = |x| differenzierbar? Was ist die Ableitung in diesen Punkten?

Lösung:

Die Funktion f ist in allen Punkten außer x=0 differenzierbar, denn dort existiert der Grenzwert

$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$$

nicht (d.h. links- und rechtsseitiger Grenzwert stimmen nicht überein). Es gelten nämlich

$$\lim_{h\nearrow 0}\frac{f(0+h)-f(0)}{h}=-1$$

und

$$\lim_{h\searrow 0}\frac{f(0+h)-f(0)}{h}=1.$$