Fachbereich
Mathematik und Statistik
Universität
Konstanz
  Logo der Universität Konstanz
Schwerpunkt Reelle Geometrie und Algebra > Vorträge


Vortrag im Schwerpunkt Reelle Geometrie und Algebra


Donnerstag, 27. August 2009, um 17:00 Uhr in F426 (Schwerpunktkolloquium)
Moshe Jarden (Tel-Aviv)
Function Fields of One Variable over PAC Fields

Let K be a PAC field containing all roots of unity. We prove Serre's Conjecture II for function fields F of one variable over K when char(K) = 0, namely H^1(Gal(F),G) = 1 for each simply connected semi-simple linear algebraic group G.

We also prove for an arbitrary PAC field K and a variable x that Gal(K(x)_ab) is a free profinite group of rank card(K). This is a stronger version of a conjecture of Bogomolov for K(x) and an analog of a conjecture of Shafarevich that Gal(Q_ab) is isomorphic to F^_&Omega.

Both results appear in a joint work with Florian Pop.

zuletzt geändert am 18. August 2009