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Abstract: We consider the mathematical model for a plate in a bounded reference configuration Q C R™,
first with n = 2, which is interacting with n = 2 magnetic fields. The latter have a damping effect. It will
be shown that the arising system generates an analytic semigroup and that the estimated exponential
decay rate tends to zero if the n constant directing magnetic vectors tend to become linearly dependent.
Then, an analogous model for n = 3 will be considered. In the case that there are less than n magnetic

fields we prove the strong stability exemplarily for cubes.

1 Introduction

We consider the mathematical model for a plate in a bounded reference configuration Q C
R™, first with n = 2, which is interacting with n magnetic fields. The latter have a damping
effect which raises the question whether the arising system gives an analytic semigroup or, at
least, if through the damping by n magnetic fields, the system becomes exponentially stable.
Concerning the latter we will then elaborate that the estimated decay rate tends to zero if the n
constant determining magnetic vectors (ﬁ 1 H 2 see below) tend to become linearly dependent.
Afterwards, an analogous model for n = 3 will be considered. If there are less than n magnetic
fields, exponential stability or analyticity is not expected. In this case we prove the strong
stability exemplarily for the rectangle Q = (—m,7)? in two dimensions, resp. for the cube Q =
(—m,7)3 in three dimensions.

The model we study in two dimensions, n = 2, is given by

potgy + dA%u — o (rot ot ') - H' — ag(rot ot h?) - H> =0  in Q2 x[0,00), (1
pih} + rot rot A' + Brrot rot (w, H') =0 in  Qx[0,00), (1
pah? + rot rot h2 + fBarot rot (w, H?) =0  in  Qx[0,00), (1.
(j=1,2:) divk/ =0 in Qx[0,00), (1
with boundary conditions
u=Au=0, vxh=0 j=1,2, (1.5)

and initial conditions

u(-,0) =ug, u(-,0) =wuy, hI(-,0)=h) j=1,2. (1.6)
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Here, Q C R? is a smoothly bounded, simply connected domain, and u € R and h/ € R?, j =1, 2,
denote the displacement resp. the magnetic fields. Here we assume that pg p1, p2, d, a1, a2, B1, B2

are positive constants. The vectors H 1 H? € R? are constant and are assumed to satisfy:
H' and H? are linearly independent. (1.7)

In other words, we assume

Dy = det (ﬁl, Hﬂ) £0. (1.8)

The meaning of “rot” is here as follows:
F:R?> — R? then rot F := 01 Fy — Oy F,

f:R? >R, then rot f := (Oaf, —O1f).
The vector product is correspondingly given by

v X h =uvihl — vy hl.

Then it holds, as in three dimensions,

A = Vdiv — rot rot.

We remark that condition could be derived from the differential equations assuming it
only for the initial value, i.e. at ¢ = 0. From the mathematical point of view system f
is a plate equation coupled with a parabolic equation for the magnetic field.

The case of only one magnetic field, i.e. h? = 0, for which one can find the modeling
e.g. in [0, 8 [I7], has found attention before, also with nonlinear models, but not yet much.
The polynomial stability has been proved in [12] for the boundary conditions v - b/ = 0, v x
roth) = 0, u = Ou/dv = 0. With our contribution we initiate to investigate the analyticity
and exponential stability of the system, which are open questions for this fourth-second-order
coupled system.

This model is closely related to the thermoelastic plate model, where we have the tempera-
ture instead of the magnetic field, and where the parabolic equation is, up to the coupling term,
the classical heat equation. The main difference, and also the main problem, consists in the cou-
pling terms. The thermoelastic coupling term makes it possible to show that the corresponding
thermoelastic semigroup is analytic, see [10]. Instead, it is not known whether the semigroup
associated to the magneto-elastic plate here, with one magnetic field, is analytic or at least ex-
ponentially stable in bounded domains. Here it will be our task to investigate the situation and
the impact of two magnetic fields and answer these questions.

The model with one magnetic field is also related to the second-order magneto-elastic model,
where the fourth-order bi-Laplacean A? is replaced by the second-order operator elasticity — A —
(A + p)V div. Here the strong stability — the energy decays to zero for each fixed initial data,

but not necessarily uniformly — was proved in [19], while the polynomial stability was proved



for a class of two- and three-dimensional domains in [14] [I6]. On the other hand, the lack of
exponential stability was shown in [4], using microlocal analysis. We remark that also the Cauchy
problem, i.e. for Q = R", has been studied, and polynomial decay rates were obtained, see [T}, [13].

In n = 3 space dimensions, the system of equations turns into

pous + dA*u — ap rot rot At - H' — asrot rot h2 - H? — asrot ot h® - H? = 0, (1.9)
pih} + rot rot h' + By rot rot (w, H') = 0, (1.10)
pah? + rot rot h? + Byrot rot (w, H?) = 0, (1.11)
psh? + rot rot h3 + B3 rot rot (utﬁs) = 0, (1.12)
(j=1,2,3:) divhk! = 0, (1.13)

with boundary conditions
u=Au=0, vxh =0, j=123, (1.14)

and initial conditions

u(-0) =ug, u(-,0) =u1, K (,0)=h}, j=12,3. (1.15)

Here, Q C R? is a smoothly bounded, simply connected domain. Our main results are, for both

dimensions n = 2, 3:
e n magnetic fields are dealt with.

e The analyticity of the semigroup and, consequently, the exponential stability are obtained:

Theorem and Corollary [3.8]

e Ag a consequence of the analyticity and the compactness of the resolvent operators com-

pactness of the semigroup is proved: Corollary

e The exponential stability via multiplier methods providing information on the dependence
of the rate of the decay in terms of the degree of linear independence of the vectors Hi ,
j=1,2(,3) is obtained: Theorem and Theorem

e The strong stability in the case of less than n magnetic fields is proved for cubes: Theo-
rem

We remark that, given the exponential stability property and and the compactness of the semi-
group of the semigroup at hand, nonlinear problems for small or even large data, depending on
the nonlinearity, seem accessible.

The paper is organized as follows. In Section 2 we provide the well-posedness. In Section 3,
the analyticity of the associated semigroup is proved using semigroup arguments and estimates
on the resolvents along the imaginary axes, also giving the exponential stability. With further

sophisticated estimates, the exponential stability is then proved in Section 4 (n = 2) and in



Section 5 (n = 3) once more, now using multiplier (energy) methods, allowing a characterization
of the decay rate in terms of the determinants Dy and Ds, respectively. In Section 6 the strong
stability is proved in the situation of less than n magnetic fields for a square resp. a cube.
Throughout the paper, we use standard notation, in particular we use the Sobolev spaces
L? = L?(Q), and H* = W*2(Q), s € Ny, with their associated norms || - || respectively || - || zs.

For the inner product in L? we use the notation (-,-), and we write 9, short for %, and 9, for
J

92
ot -

2 Well-posedness

In order to formulate the problem as evolution equation of first-order in time, we consider in

n = 2 space dimensions as phase space
M= (H(Q) N HL(Q)) x L2(Q) x L2(Q) x L2(9),

where

LZ:={he (L*)"|divh=0} (n=2,3).

Taking the norm

d a1p1 QP2
V2:—/ —|Aul? + [v)* + —=|h']* + h??|dz 2.1
V1% Q[po\ ° + [v] Bip H 52P0‘ %] (2.1)
for
u
v
V= )
h2

and the associated inner product (-,-), H is a Hilbert space.

In n = 3 space dimensions we have analogously
W= (H(Q) N H(Q)) x LA(Q) x LA(Q) x LA(Q) x LA(Q)

and

d a1p1 Q202 a3p3
VQ::/ —|Auf? + |v* + ht1? 4 h% + h3|%|da. 2.2
V13 Q[PO’ "+ Jo]" + B1r0 -7+ 5[)! I+ Bp| *]d (2.2)

For two space dimensions we introduce the operator A by

v

—

—%AQU + 21 (rot rot hY) - H' + 22 (ot rot h2) - H?
—’% rot rot (vH!) — ;Tll rot rot h'
— 52 1ot rot (vH?) — L rot rot k2
P2 P2

AV =



and in three space dimensions by

v
—%AQu%— &4 (rot rot h') CHY 4 %2 (ot rot h?) - H? + %4 (rot rot h?) - H?
AV = —% rot rot (vH') — pilrot rot il

—% rot rot (UI?) - p% rot rot h?
—B5 rot rot (vH?) — L rot rot h?
p3 P3
for V in the domain

D(A):={V eH|uec H' , Auc H},W € H> v x h/ =00n 09, j =1,2(,3) }. (2.3)

The original initial-boundary value problem now turns into the first-order evolution equation

Vi(t) = AV (1), V(0) = Vo, (2.4)
where
u('vt) Ug
ug(-,t) U1
V(t):=| h'(,t) |, Vo:=| h{
h2('7t) h(Q)
(R (-, 1)] [15]

The operator A is densely defined and dissipative, it satisfies

Re (AV,V)y = —BO:;O/Qrothl\de—szo/Qroth]Q [—gz)/groth]:sdx] <0. (2.5)

The properties of the model that we deal with here depend on the properties of the resolvent

operator over the imaginary axes, that is defined by the system
iNU—- AU =F

for A € R. In terms of its components the above system is given by

\u—v = fi, (2.6)

i)\u+;iA2uj;(rot rot h') - H' — %(rot rot h?) - H? = fy, (2.7)
~ 1

izh! + girot rot (vH') + o rot roth' = f3, (2.8)
4 1

iNh? + girot rot (vH?) + P rot rot h? = fy. (2.9)

Now we show that A = 0 € p(.A) (resolvent set). For this purpose let F' € H, and we look for

a solution V' € D(A) to AV = F = (f1, fo, f3, f1), and suppose w.l.o.g. n = 2. So let v := —f7,
then

veHIOHY, ol < clFlu, (2.10)



with ¢ > 0 not depending on F'. Now we look for j = 1,2, at the Maxwell system

1 ; ; iy
——rot roth! = —for;+ Bi rot rot (vH”)
Pj P
divhk/ = 0,

vxhl = 0 (09).
This is uniquely solvable in a simply connected domain with smooth boundary and using (2.10)),
Wem, g < clFu.

For the last estimate we used the inequality

A7 || 2 < || rot rot A7 ||, (2.11)
cf. [20]. Finally, we look at
d . ﬂ
—— A= —fy — ﬂ(1rot rot hl) - H' — %(rot rot h?) - H,
Po £0 Po

u=Au=0 (092).
This now has a unique solution satisfying
we H'NH}, Auc H., 1wl gra < || F||%-
Altogether we have found a unique V' € D(A) solving AV = F' and satisfying ||V ||y < ¢||F||%-

Remark 2.1. The last estimates imply, using Rellich’s compacitness theorem, that the inverse

A=Y s compact.
Remark 2.2. By the solution V to i\V — AV = F, for any X € R, satisfies

(03]
B1po

/ |rot h'2dx + 0[2/ | rot h? [—i—a?’/ \roth\%x] = Re (V,F),, (2.12)
Q Bapo Ja Bapo Ja

By the Lumer-Phillips theorem we conclude

Theorem 2.3. The operator A is the infinitesimal generator of a Cy-semigroup of contractions

(etA)tzo on H. For any initial data Vo € D(A), problem has a unique solution V' satisfying

V e CY([0,00), H) N C°([0, 0), D(A)).

3 Analyticity of the semigroup

We will prove the analyticity for two and three space dimensions using the following characteri-
zation that can be found in [18] IT].



Theorem 3.1. A contraction semigroup T' = (T(t))>0 generated by A on a Hilbert space H is

analytic if and only if the following two conditions holds.

lim
AER, |A|—o0

iR C o(A)

sup [Alf|(iA = A) 7! < o0

(3.1)

(3.2)

Lemma 3.2. Under the above notations the operator A associated to system (1.1)-(1.4) (respec-
tiwely (1.9)-(1.13)) satisfies condition (3.1]).

Proor: Since A~! is compact it is enough to show that there are no imaginary eigenvalues.
Suppose that there exist U € D(A) satisfying

we conclude by (2.12)) that A7 = 0, for j = 1,2(, 3). Using (2.8)) and (2.9) we get

rot rot (VH?) =0 j

AU — AU =0

1,2(,3).

Now, in two dimensions, this is equivalent to the linear system

Since det Hy = D3 # 0 we conclude v = 0. Using (2.6

proving (3.1) in the two-dimensional case.

In three dimensions, we obtain analogously

0 —-Hy 0 H}
H} 0 -H{ 0
0 —-H3 0 H}
H} 0 -H} 0
=H,

v

0201V
81 82?)

2
05v

0 -HY -Hl 0o Hl 0 0 0 Hi
Hi 0 0 -Hf 0 -Hf 0 0 Hi
Hi 0 0 0O Hi 0 -—H{ —-H} 0
0 —-H?} -H 0 H} 0 0 0 H}
H? 0 0 —-H? 0 —-H} 0 0 H3
H? 0 0 0 H? 0 —-H? —-H? 0
0 —-H3 —-Hy 0 H} 0 0 0 H}
H3 0 0 -H}) 0 -—-H3 0 0 H3
H} 0 0 0O H; 0 —H} —H3 0
=Hg

satisfies (checked by Maple©)

det Hg = —2(D3)3 7& 0.

O%v
81 8211
0103v
82611)

d3v
828311
0301v
83621)

3v

we get that u = 0 so we have that U = 0,

(3.4)



So we get again v = 0, then v = 0 and finally U = 0, thus proving (3.1) also in the three-
dimensional case.

We remark that, with (3.1)), we now already have the strong stability of the semigroup.
To prove (3.2)) we start with

Lemma 3.3. For A large enough the following inequalities hold
1A%z < Al <IIUIIL2 IR e + [l Au L2 + B |F”H) = A€, (3.5)
. , 1 .
rot rot h7[2 < || (WHLz [ Aullz + W\FHH) L i=1203.  (36)

Moreover we have

1/2 1 2 1/2 1 2
lullr < i 101+ VI IF I el < N0+ lUIIF 1 3.7

where c 15 a positive constant not depending on .

ProOOF: We consider the two-dimensional case, the three-dimensional case is similar. From
(2.7) we get

[A%ul| 2 < ellixv] g2 + || (rot rot h') - HY|| 12 + c||(rot rot ) - H?[| 2 + c|| F|jx. (3.8)
By and we have
I(xot vot A7) - B[ 2 < e\l (1Bl g2 + [ Aullp2) +ellFllw,  §=1,2(,3).
Inserting this inequality into we get
1A%ull 2 < el (vl g2 + [1AH 2 + A2 L2 + | Aull2) + cl| F 3. (3.9)

Using the same ideas we get (3.6)), hence the first part of this Lemma follows. Using interpolation

once more we get

1/2 1/2
lullgr < ellul| 5 ull 1s
1/2 1/2
< qu v = il fE ||/
1/2 1/2 1/2 1/2
Similarly,
1/2 1/2
ol < ol Bllvlis
< vl [iAA — Af[FS
1/2 1/2
< AU g+ U322
Hence our conclusion follows. J



Lemma 3.4. For any € > 0 there is cc > 0 such that for j = 1,2

- c
1] < elUllx +

Sl E N (3.10)
Al

where ¢ — 00 as € — 0.
ProoF: For any f; such that div f; = 0 there exists exactly one solution to
iAW) 4 ot Tothy = f; in Q,  vxh}=0 on 0Q, (3.11)
cf. [9]. Let us decompose the function h? into two components:
W =1y + (W — by) = I + b

Since v x b/ = v x hi; — 0 we get v x h} = 0. Moreover, taking the difference of equation (2.8)
with (3.11)) with (and (2.9) also) we get

iAhi + rot rot b + B rot rot (vH’) = 0. (3.12)

Multiplying (3.11) by i)\hic and taking the real part, then multiplying (3.11) by rot rot hgc and
taking the real part we get

[Nz < ellFllse,  [rot rot k|2 < [ Fll. (3.13)

Multiplying (3.11)) by i)\hic and taking the imaginary part and using the first inequality in ((3.13])

we get
A2 rot Byl 2 < cl| Pl (3.14)
Using equation (3.12)) we conclude
Al < elrot bl + cllvl -
Recalling that b/ = hj + hi and using we get
[rot hi|| = |[rot A" — rot A% < |[rot h"|| + |A| 72| F|.

From Lemmawe get |[v]| g1 < e AY2| Uy + CHUH1/2HFH1/2 and using we arrive at

Bl < el AU+ el Ul IF 1 + N2 (3.15)

Using interpolation and recalling that ||v|| < ||U||x we get

IRl < ellhdllh? || vot Al 14

Using (3.15), (2.12) and (3.14) we get

[eAlr®

_ 1/2 _
< W? (21T e+ T I IF 1 + ITY2IEN) (ot bl g2+ A2 22

PG (\AW?HUHH 4 UIIFIY + N 21E) QU IEIE + A2 )2

ellUlln +

IA

”FHH
[A]



Hence, using (3.13), we obtain

Ce

W71 < 1Bl g2 + 15l e < ellUll + B (I
and our conclusion follows.
Next we have the estimate
Lemma 3.5. For the solution of the resolvent equation, we have
¢
[Aul* < e|Ulf5 + ﬁ\\FH%-
PRrROOF: From (2.8) and (2.9) we have
iAR' + rot rot h! 4 Bridrot rot (WH') = f3 4 By rot rot (fLHY),
iAR% + rot rot h? 4 BaiArot rot (WH?) = f4+ Barot rot (f1H?),
leading to
Birot rot (uH') = —h'— i1r0t rot h! + iF1
iA i
. 1 1
Byrot rot (uH?) = —h*— Y rot rot h? + aFQ,
where

F = <f3 + 31 rot ot (flﬁl)) , Fyi= <f4 + Bz rot rot (f1H?)).

Multiplying these equations by rot rot (uﬁ ) for j = 1,2, we get

(3.16)

(3.17)

(3.18)

_ L 1 L. .
61/ |rot rot (uH”)|* do = —/ rot rot (uH” )W dx — ,)\/ rot rot (uH?) rot rot b’ dx
Q Q ¢ Q

1 g
+— [ rot rot (uH’)F; dx
A Q

o 1 - .
= —/ rot rot (uH’)h dx — / rot rot rot (uH”)rot b’ dz
Q iA Jo

1

L. . 1 iy
-— rot rot (uH”)v x rot b/ dI" + ,)\/ rot rot (uH’)F; dx
G Q

J/

=:J SOl E %

Hence

/ | rot rot (WH)]? dz < c/ \W % dx + - | rot rot rot (uﬁj)\Q dz +
Q Q

Al e
Ul F 24

Ce

J+
A

Using interpolation it follows

IN

/ | rot rot rot (uH”)|? dz cl|ul| gz ||| ga
Q

A

cl| Aul g2 | A%l 2.

10

(3.19)



Using Lemma we get
/Q | ot rot rot (ul)[* dz < || Aullg2 ([[o]l 2 + 1M ]| 2 + | Aul z2) + el Aul| 2] F [l
Note that

c .
Jo< WHUHstthJHstz

’)\| (H H3/4|| ||1/4> (HhZHl/QHh]Hl/Q)
iy (18w % 1) (1571

IN

IA

[l
Recalling the definition of € given in (3.5) and using Lemma we obtain

c 3/4 ¢1/4 i||1/2 g1/2
J < T (1aulPse/) (17 e?)
3/2| i) 1/2
< wl/‘*@ 11
< 2 hl

Inserting this inequality into (3.19) we get

/ymt vot (w2 do < c/ i dx—l—e/ W + | Aul dz + < [Tl F
Q Q Q

i
RY

+M€’2HFH§{. (3.20)

Since H' and H? are linearly independent, we conclude from (3.20) for j =1,2

/ Auf? do < ¢ / W2 4 |22 e+ e / of? e+ Ul Fll + -5 1P,

Al

Now using Lemma our conclusion follows. O

Finally we estimate v starting with

Lemma 3.6. Under the above conditions we have

Ce
[ 10P do < Ui+ S5
Q Al
ProOF: Multiplying equation (2.7) by i\v we get

/ |Av? dx—i—d/ AuilAv daf;—l—oq/ rot bt - rot (IMvH?') do+
Q ) Q

a2/(r0th2)- rot (IANvH?) dx = / foidv dx.
Q Q

11



Using (2.6) we arrive at

/ M2 dz = di)\/ AuAv d:c—H')\al/ h' - rot rot (TH') da:+oz2i)\/(h2)- rot rot (0H?) dx
Q Q Q

Q

+/ foidv dx
Q

ScAP [P+ AP | AulP+e MUl Fll2

< AP / A2 d + c|A]? / W2 4 2P dee + AT | F
[9] Q

where we used

i)\aj/ h’ - rot rot (THY) da
Q

IN

IN

<

i)\aj/ﬂhj - rot rot (i\u — f1)H’) dx

cIAP[|B7[| 2 vot rotullzz + e|A[[A7 p2]| rot ot ful| 2
AP 2 | Autl 2 + el AR g2 [ A fol 2

cIAP I + el APl Al + e AT gl F -

From Lemma Lemma [3.5| and ([3.21]) we get

/Q Wf? dx < eAPIUIE + eI FI

finishing the proof.

Now we can prove the analyticity.

Theorem 3.7. The semigroup associated to system (1.1)-(1.4) is analytic.

PrOOF: From Lemma [3.4] Lemma and Lemma, we get

/ (o + [ Aaf? + B2 + B2 da < €| U2, +
Q

This is equivalent to

U153, < elUl3 +

So we have

which implies

IGAT = AT F|IF, <

U3 <

€
WHFH%-

C,
I

Ce

A2

17113,

Ce

A2

1113,

Using Lemma [3.2) and Theorem [3.I] our conclusion follows.

As usual we can conclude

(3.21)

Corollary 3.8. The semigroup associated to system (1.1)-(1.4) is exponentially stable, i.e. there
are k > 0 and C' > 0 sucht that for all Viy € H and all t > 0 we have

e ' AVolu < C|[Volla e ~*".

12

(3.22)



Corollary 3.9. The semigroup (e!)i>o associated to system (LI)-(1.4) is uniformly continuous

fort > 0 and a compact operator over the phase space H.

PROOF: Since the semigroup is analytic, in particular it is a differentiable semigroup, that is
the semigroup is differentiable infinitely many times in the uniform operator topology for ¢ > 0.
This implies that the semigroup is uniformly continuous. Finally, using Remark and Theorem

3.3 of [18] p. 48] we get that the semigroup is compact. O

In the next two sections, we will prove the exponential stability by the energy (multiplier)
method directly, in particular in order to get information on a possible dependence of the decay
rate k in Corollary on the degree of linear independence of the vectors ﬁj, Jj = 1,2(,3),

respectively in terms of the determinants Do and Ds.

4 The exponential decay rate and the magnetic vectors H', H>

We consider the system in two space dimensions from the introduction, (1.1)-(1.6]), i.e.

POl + dA?u — oy Tot rot h! - H' — as Tot ot h? - H? = 0, (4.1)
p1h! + rot rot h' + By rot rot (w, H') = 0, (4.2)
pah? + rot rot h? + By rot rot (w H?) = 0, (4.3)
(j=1,2:) divk! = 0, (4.4)
with boundary conditions
u=Au=0 vxh =0, j=1,2, (4.5)
and initial conditions
u(0) =ug, w(-,0)=u', K(,0)=h) j=12 (4.6)
To show the exponential stability, let us introduce the first order energy
d a1P1 Q202
Ei(t) := —[[Au(t, )I” + [fue(t, ) [* + IIhl( P+ ||h2( II?
Po Bip B2p
Then by denoting
E\(t) = By (u, h', h?;t)
For initial data taking in D(.A) we define the second-order term Es by
1P Q202
Es(t) := Exr(u, hy, hist) = *IIAUt( P+ luae(t, )7 + Bip Hht( P+ Bop Hht( ol
arising as first-order term for the differentiated (in time) system (4.1)—(4.3). For the sum
E,q(t) := E1(t) + Ex(t) (4.7)

13



the exponential decay will be proved. Let Dy = det <ﬁ 'H 2) again.
Using multiplicative techniques, we easily get, cf. (2.5)),

d 201 112 2a 2012
—FE,qt) = ———— (||roth*||* + ||roth rot h°||“ + || rot h
77 Ena(t) e (Il I + [ rot by [|?) — ool (I 1 + || rot A7 [|?)
< —c (IR 3 + 1R300 + el + 1R 1F) (4.8)

where we used the simple connectedness for the last inequality, see [3, p. 356] or [9, p.157], and
where we mostly drop the parameters ¢, z. Moreover, ¢ will denote generic positive constants not
depending on Dy (as Dy — 0).

Let us introduce the functional
i=—pr (0w BY) + 02 ).

Lemma 4.1. Under the above notations we have for any € > 0

d
G S Dol (el + [ Ful?) + LT Au & (e + ) +
2
C
(IR B+ 18203 + ¢ 3 I1bE 2. (19)
k=1

PROOF: Multiplication of 1' by us H! resp. of 1D by uy H?2 yields, for j = 1,2,

d . .. . L . , .
(W uy H) = (roth?, rot (u; H?)) — B;|| vot (ue H?)||* — p1 (W, uy H?). (4.10)

—P1; i

Using the differential equation (4.1)) for u;, we have

pr (W uy HY) = 7p1<hj,iA2uﬁj>+pla1(h] rot rot h' - H' H) +
Po
1a2<hj rot rot h? - H? H7)
Po
= dm/ Wi 59 A ds +dp1<V(hj-ﬁj),VAu>+
po Joq "o Po
=19
( t () H) + rot (K}, ﬁ%)) - H", rot h*) +
5
/ Vo HE —V1Hk>(rothk) (ki - Hi) ds . (4.11)
::I;’j
Thus,
—pr(h u 1Y) < 5*IIVA I”+ *th”%{l"‘ > IR (4.12)
k=0,j=1
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Combining (4.10) and (4.12), we obtain
d

dt - 2

c
(I + 19213)
2 .
+el v+ Y .
Po k=0,j=1
The boundary terms are estimated for j = 1,2 as follows.
0. dp1 .9 . . )
1% = 192 [ i 35 A ds) < b IV Al < B g 1A
po Joq v
Using the differential equations ({.1))-(4.3]) we obtain
2
1T < el | <||utt|| + > || vot rot hk!)
k=1
' 2
< el (rruttu + 37 (I8 + ot xot <utH’f>u)>
k=1
2
. . A
< W g D IREN + el | (] + ([ Auel]) -
k=1
This implies
2
0,5 k Clpi
571 < e 3 IBEIP + S 5+ el + €l A
k=1
Moreover,
. . 2 a - =
P+ s Y| / (vodt = viF*) (vot ¥ (i - ) ds
=1 ro Joo
2 .
< e ) |rot hk|H1> 177 || 0
k=1
<

2
c .
e lIRE? + I 5+ ell A,
k=1
In the last estimate we used (2.11)) again. The negative terms
3 , ,
=5 (lvot (ue A2 + | xot (ue H)|?)

in (4.13)) yield a negative term —||Vu,||? as follows. Let, for k = 1,2,

fk = 1ot (Utﬁk) = 81utﬁ§ — 821%['_[‘{6.

o (0w Y (20 %)< = (ot g )2 + [ vt ()P +

(4.13)

(4.14)

(4.15)

Considering the above identity as system for the unknowns 0ju; and Osu;, we conclude, for

m = 1,2, since Dy = det (ﬁl ﬁQ) #0,
1 /= ,
Outr = 5= (Hnfo = HL11)
2
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hence

V| < |DC|2 (|rot (ug HY)[2 + | rot (utﬁ2)]2,)
2
implying
1 . .
e (ludlP + 1Vel) < 105 (Ileot Y + ot (w H)]?) (4.17)
Combining (4.13]), (4.14), (4.15) and (4.17) and recalling the definition of J we obtain inequality
(4.9). Hence our conclusion follows. (I

Theorem 4.2. There exist Ko > 0 and k2 > 0 such that for the solution to - and
allt >0
Epna(t) < KoEpq(0)e 2!

holds. ky = ka(D2) = O (]D2]2) as Doy — 0.

As we can see from the proportionality, the decay rate ko vanishes if H' and H? become
parallel, and it is strongest if H'! and H? are orthogonal to each other. Actually, | D3| describes
the volume of the parallelogram spanned by H! and H? and equals for these unit vectors | sin(g)],
where ¢ is the angle between the vectors.

PrOOF of Theorem .2} The multiplier used are a modification of those also used for a ther-
moelastic system in [I5], while essential new problems appear here arising through the magnetic

field.
Now we multiply (4.1) by Au to get

2

d ;

- (polue, Au)) = —p0||utH2—|—d||VAuH2—|—§:ak<<r0t rothk>Hk,Au>
k=1

2
= —pollu|® +d||VAu|?* + Zak(rot hE., rot (AuH"))

k=1
whence we obtain
d 9 d 2 112 2112
a((—pmmn < polluel” = 5 IIVAu| + (1P 170 + 1211 70) - (4.18)

Using Lemma [4.1] we have that
@ (30— SADaP . &))< = E1DoP (Yl + 1Vl + 5 VA +
dt 2 B 2 2p0

2
C
e (el + 1 A]?) + S 37 1513
k=1

2
+e > |IhFIP (4.19)
k=1
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Now we multiply (4.1)) by uy and obtain

0 = pollue|?®+ d(A%u,uy) — (ayrot rot h' - H' + agrot rot h? - H?, uy)
d
= pollull® + = (dAu, Aug) — d| Awg* —

jt <<a1 rot h', rot (usHY)) + (ag rot h2, rot (Utﬁ2)>> +

(ayrot hy, rot (u H')) + (agrot hZ, rot (usH?)).

Hence

2
d "
p < dAu, Aug) + kgl g ot h¥ ) ot (utHk))>

2
— C
< —polluarl® + dll Aurl? + Y (ellrot (e H 2 + Z[1nf|2) (4.20)
k=1
Let us consider the functional
c 2
31 5= 3(8) — 5| Dal*(ue, Au) + [ Dal(dAu, Aug) + Dol Y (e rot ¥, rot (u HY)).
k=1

From (4.19) and (4.20) we get

N ¢ d
S < =SDoP (Nl + 11Vuel® + 51V AUl ) = 22| Do ffugel|? +
4 200 2

2 2
3d c
+7\D2\HAWII2+52||hk\|fql +e> |Ihf)%, (4.21)
k=1 k=1

for € < d/2 small enough. To finally obtain the yet missing term of type “—||Au;||*”, we calculate

Awuy in terms of hg and rot rot b7, j = 1,2, as follows. The equations 1' 1} yield, for j =1, 2,

rot rot (u H7) = o h] — —rot rot hY =: ¥/, (4.22)
Bt ﬁg
in particular
: 0201w H3 — O3u, H
A i AL T (4.23)
—61 utHg + 8182%5[{{

With the matrix Hy, defined in (3.3)) and satisfying detHy = D3, (4.22) is equivalent to the

linear system

81ut b%
020 b
Hy [ 0 = 2| (4.24)
8182Ut bl
822Ut b%

17



By Cramer’s rule we compute
1 1
3%ut:H2(Hllb§—Hfb%), 322Ut:F2(H225%—H215%)7
thus
DyAuy = Hi f3 — Hify + H3 fi — Hy ff =: g. (4.25)

Typical terms in g have the form
(a) alathi and (b) agﬁlﬁmhi, (4.26)

where 7, k,l,m = 1,2, and the constants a1, as can be bounded independent of Hi. Without loss
of generality we may assume Dy > 0 (otherwise multiply (4.25) by —1), then we obtain from

multiplying (4.25) by —Aw,
Dol A2 = (g, Au). (427)

The term of type (a) in g is estimated by
a1 (Bhl, Aug)| < es||Awg||? + ]| Ok |2 (4.28)
For type (b) we get

ag(O10mhi, Aug) = aa(Omhl, 8 Auy)
d

- = <a2<8mh{3,81Au>) + ag(Omihl, A, (4.29)

Combining (4.27), (4.28)), (4.29) we obtain

. d . ,
—|Daf|Aue][* = = 3" ar(Ouhf. Aug) = 3 (a2<amh;,alAu>) +3 as(0mih], B Aw).

=J
For the sum J = J(¢) of all - say: P - terms of type —a2<8mhi,61Au> we have

d Do
97 < P2y 4 e e (B + 1821 (4.30)

Using the differential equations, we obtain

Tl < e (bl + 182 ) IV Al
< (Al + 102 n) (1Aul] + [|A%u]])
S B (4.31)

Now we can define the Lyapunov functional
£2 = ﬁg(t) = MEnd + 31 + 4dJ, (4.32)

where M > 0 will be chosen large enough below. Combining the estimates (4.8)), (4.9), (4.18]),
(4.20), we get
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c d
=510 (ol + 17+ 52 [V al? ) = 1D +
d c 2 2
S DallAw? - - O W+ (- IR (43)
k=1 k=1

With these choices and using the Poincaré estimate |Au|| < ¢||VAul|, we conclude

d [ M ¢|Dsf* cpo|Da|* 1 |D2lpo
Lry < — - - E
atr = mm{Q’ s 4 2 2 nd
= —rEn. (4.34)
Here
r =0 (|D2|?) as Dy — 0. (4.35)

Moreover, there exists Mo > 0 such that Q := L9 — M E,4 satisfies

|Q| < MQEnd'
Choosing M > 2Ms we get
MaE,q < Lo < 3MaEp,. (4.36)
Defining
r
= = O (|Do?
)
we obtain from (4.34)), (4.36)
d
— Lo < —koL
2 S Thek2,

thus
£2 (t) S EQ (O)e_'” t,

and, again by (4.36),

Epna(t) < 3MyE,q(0)e "2t

which proves Theorem [£.2] O
We remark that one also obtains the exponential decay of the first-order energy term E(t) from

Theorem .2 by an abstract semigroup argument.

Corollary 4.3. There exists Ko > 0 such that for the solution to f and all t > 0
El(t) < IN{QEl(O)ef@t
holds.

PRrROOF: We have
Ey =2| V|3 for V = (u,us, h', h?).
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Let VO € D(A) and V; = AV, V(0) = V9. Then W° := A71V0 ¢ D(A4?%). Let W satisfy
W, = AW, W(0) = W°. Then

VO3 = AW O35 = IWe@)I3, < ¢ (O3, + [AWO]7,) e~"2!

by Theorem [£.2] Thus,
V()13 < cllVOFe".

0

5 The exponential decay rate in 3-dimensions and the magnetic
vectors H', H?, H3

In three space dimensions we have system (1.9))-(1.15) from the introduction,

pous + dA%u — aq rot ot h' - H' — asrot rot h? - H2asrot rot h® - H® = 0, (5.1)
prht + ot rot h' + By rot rot (w,H') = 0, (5.2)
pah? + rot rot h? + B rot ot (utﬁQ) = 0, (5.3)
psh? + rot rot h + B3 rot rot (utﬁ?’) = 0, (5.4)
(j=1,2,3:) divh! = 0, (5.5)

with boundary conditions
u=Au=0, vxh =0 j=123, (5.6)

and initial conditions

U(,O) = Uuo, Ut(',O) = ui, hj(vo) :h[Jju ,7 = 17273' (57)

In analogy to the two-dimensional case treated in section [] define the first- and second-order

energy terms for a sufficiently smooth solution by
d Qg Pk (1
&i(t) = %HAU( P+ [lue (2, |!2+Z IIh Ol

and, with
E1(t) = &1 (u, bt B35 t),

kP
Ea(t) := Exu, hy, b5 t) = *HAUt t )1 A luae (2, )17 + Z Hhk 1%

For the sum
Ena(t) = &1(t) + &a(t) (5.8)

the exponential decay will be proved if the unit vectors H 1 H? and H?3 are not linearly dependent,
i.e. if we have three essentially different directions of these magnetic field vectors. Let D3 =
det (ﬁl H? ﬁ?’) again.
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Theorem 5.1. There exist K3 > 0 and k3 > 0 such that for the solution to — and all
t>0
gnd(t) < Kggnd(O)eimt

holds. k3 = k3(Ds) = O (|D3|?) as D3 — 0.

The decay rate 3 vanishes if H L H? and H3 become linearly dependent parallel, and it is
strongest if they are orthogonal to each other. Remember that | D3| measures the volume of the
parallelepiped spanned by these vectors.

PROOF of Theorem The proof follows the lines of the proof of Theorem we hence only
point out the essential modifications. Using essentially the same multipliers, the first modification
arises in computing Vu; from known f* := rot (utﬁk), k =1,2,3. We get the formula being
analogous to with the ansatz for a pointwise representation

3
Vug(t,z) =Y y(t,x) H"
k=1
and then computing the coefficients ~; as
<f27ﬁ3>R% <f37ﬁ1>R% <fle—_’I2>RMf
M= = T = R
Ds Ds Ds
Thus the analogue to (4.17)) now reads
1 = ~ -
e (fluel* + 1 Ve ?) < Dyl (H rot (ueH')||* + || vot (ue H?)||* + || rot (UtH3)||2) : (5.9)

The second modificationa comes up in calculating Auy in terms of hg and rot rot h’, j = 1,2, 3,
starting in two dimensions in (4.22)).Now we have

#7 := rot rot (v H?), (5.10)
the linear system
a%Ut f11
0109y f3
0103u 1
m | PO B (5.11)
03024 fés
8§Ut fg)

with the matrix Hs from ({3.4) satisfying
det Hs = —2(D3)3.

Exemplarily we compute d?u; by Cramer’s rule as

1

OFup =
Lt det Hg

det(H),
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where

L -H} -H} 0 H{ 0 0 0 Hi
> 0 0 —-Hf 0 —-Hif 0 0 H
s 0 0 0O Hy 0 —-H! —-H} 0
2 -H? -H?} 0 H} 0 0 0 H?

20 0 0O H 0O —H? —H7 0
ff -H3 -H3 0 H} 0 0 0 H}
5 0 0 -H} 0 -H3 0 0 H3
30 0 0 H} 0 —H} —H3 0

Since

det(H) = Di [(HHy — HyH;)fi + (H{H3 — HyHY)f> + (H3HY — H3HY) f3
+(Hy Hg — Hy H3) ff + (Hy Hy — Hy HY) f5 + (H H3 — HyHY) f3
+(Hy H3 — HyH3) {7 + (Hy Hy — Hy HY) f5 + (Hy HY — HyH3) fy]

(again checked by Maple©) we conclude

3
OFug == Y apfh|. (5.12)

k,m=1

with constants a}cm € {H;Hlp |4, 7,p,1 = 1,2,3}; similarly for 03u; and 03u;.
This way we obtain the relation (cp. (4.25)))

3 3
DsAug= > (> al, | fE. (5.13)
km=1 \ j=1

Now we may carry over the remaining arguments from section [4] and thus finish the proof of
Theorem B.11 O

We have the corresponding corollary for the first-order energy term as in section [

Corollary 5.2. There exists K3 > 0 such that for the solution to f and allt >0
Sl(t) < Kg(“:l (0)6_53]5

holds.

6 Strong stability for less than n magnetic fields

The results on exponential stability given in Sections 4 and 5, with having an estimated decay
rate going to zero as the vectors H', H? [H?]) tend to become linearly dependent, might be seen
as an indication — of course not a proof — that there is no exponential stability given in the case

where there are less than n linearly independent magnetic fields, i.e. for n = 2 only one magnetic
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field, and for n = 3 either only one or at most two linearly independent magnetic fields. The

property of strong stability is proven to be true now exemplarily for the rectangle Qs = (0, 7)?

in two dimensions, resp. for the cube Q3 = (0, 7)3 in three dimensions.

Remark 6.1. In the previous sections we had assumed, for simplicity, that € is smoothly

bounded. Although the classical elliptic regularity results for smoothly bounded domains do not

carry over to general domains with corners, cf. [2, 16, (7], in particular [7, Fzample 9.29], the

necessary results here remain valid for a square resp. a cube, where we can get the usual elliptic

H?- resp. H*-reqularity results for —A resp. A% with the boundary conditions used.

We consider the following systems in this section. For n = 2:

pots + dA%u — a1 (rot rot hl) - H =0 in Qs % [0, 00),
p1h} + rot rot h* + Brrot rot (w,H) =0  in Qg x [0, 00),
divh! =0 in Q9 x[0,00),
with boundary conditions
u=Au=0, v xhl=0,
and initial conditions
u(-,0) = ug, w(-,0) =wuy, h'(-,0)=h}.
For n = 3 with one magnetic field:
pols + dA%u — aqrot rot h' - HY =0 in Q3 x [0, 00),

p1h} + rot rot h' + By rot rot (utﬁl) =0 in Q3 x [0, 00),
divh' =0 in Q3 x[0,00),

with boundary conditions
wu=Au=0, vxh'=0,

and initial conditions
u(-,0) = ug, u(-,0) =wu1, h'(-,0)=hy.

For n = 3 with two magnetic fields:

pous + dA*u — aq rot rot k' “H' —asrot roth2- H2 =0 in Q3 x
p1h} + rot rot h' + By rot rot (w; H') =0 in Q3 x

pah? + rot rot h? + By rot rot (w, H?) =0  in Q3 x

(j=1,2:) divh =0 in Q3x

with boundary conditions

wu=Au=0, vxh =0 j=1,2,
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and initial conditions
u(-,0) =ug, u(-,0) =wuy, hI(-,0)=h) j=1,2. (6.16)
Then we have the strong stability result for the square resp. the cube in the following

Theorem 6.2. In both dimensions, n = 2,3, the semigroups (etA)t>0 associated to the problems

(6.1)-(6.5) resp. (6.6)-(6-10) and (6.11)-(6.16) are strongly stable, i.e. we have for any initial data
VoeH

lim [le®AVO||y = 0.
t—o00

PrOOF: Since A~! is compact, cf. Remark , we have just to exclude purely imaginary
eigenvalues. In the following we assume w.l.o.g. that all constants in the differential equations

above are equal to one, i.e.

First we consider n = 2. i.e. system (6.1)-(6.5). Assume that 0 # V = (u,v,h') € D(A) is an
eigenvector to the purely imaginary eigenvalue ¢\ with 0 # A € R, then

IV — AV =0, (6.17)
or, equivalently,
iu—v = 0, (6.18)
idv+ A%u — (rot ot h') - H' = 0, (6.19)
iAk' + rot rot (WH') + rot roth' = 0. (6.20)

Since Re (AV,V)y = 0, we conclude from the dissipation equality (2.5) that h! = 0, thus,

using (18), (B19), implying

A%y = N, (6.21)
rot rot (uH') = 0. (6.22)

Hence, u is an eigenvector for the biharmonic operator A? with the boundary conditions u =
Au = 0 in Q9, having to satisfy equation (6.22)). Thus,

u = u(xy,z2) = sin(y121) sin(y2z2), (6.23)
with some (v1,72) € N2 with A2 = (742 4+ ~2)2. The side condition (6.22) yields
0 B 8281uH21 — 822UH11
0 —8%’LLH21 + 8281uH11
_ yoy1 cos(y1w1) cos(yere)Hy + 3 sin(yiw1) sin(yexe) Hi (6.24)
72 sin(y121) sin(yoxe) Hy + y2y1 cos(y1w1) cos(yoxe) Hi
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But it is easy to see that the latter cannot hold simultaneously for all (x1,x2) € Q9. Hence, the
eigenvector V' cannot exist, and we have proved the strong stability for n = 2.

Regarding the case n = 3 with one magnetic field, i.e. system —, we argue similarly.
If V is again an eigenvector to a purely imaginary eigenvalue ¢\, we obtain, as in two dimensions

above, that u has to satisfy

Ay = N, (6.25)
rot rot (uH') = 0. (6.26)

Hence, u is again an eigenvector for the biharmonic operator A% with the boundary conditions
u = Au =0 in Q3, having to satisfy equation (6.26)). Thus,

u=u(xy,z2,x3) = sin(y121) sin(yex2) sin(yzzs), (6.27)

with some (y1,72,73) € N3 with A2 = (42 + 73 ++2)%. The side condition (6.26) yields

0 8162uH21 — Ogqul&%qul + 8133UH§
0 | = | O20suH:} — 02uH} — OFuHY + 9201 uH]
0 8381UH11 — aqu?} — 6§uH§ + 8382uH21.

Y172 cos(mix1) cos(yaxa) sin(y3xs) Hy + (73 +73) sin(y1a1) sin(yea2) sin(ysas) Hi

= | ~eys3sin(yix1) cos(yexa) COS(’)/g.CL‘g)Hzl + (712 + 'yg) sin(yi121) sin(y2z2) Sin(’Yg{E;g)HQl
173 cos(miw1) sin(yawa) cos(yzxs) HY + (7 +73) sin(yia1) sin(yea2) sin(ysas) Hy

Y1793 cos(y1m1) sin(yex2) cos(yszs)Ha
+ | 7172 cos(y1z1) cos(yaxs) sin(yszs)Hi | - (6.28)
Y25 sin( 1) cos(y2w3) cos(ysws) H]
But the latter cannot hold simultaneously for all (x1,x2,z3) € (23, take for visualization for
example H! = (1,0,0). Hence, the eigenvector V cannot exist, and we have proved the strong
stability for n = 3 with one magnetic field.
Finally, for n = 3 with two magnetic fields, i.e. system —, the difference to the
case of one magnetic field is that u as in has to satisfy and additionally

rot rot (uH?) = 0. (6.29)

The more it is impossible that an eigenvector V', as assumed, exist. Thus the strong stability in
this case is also proved. [l
The question of non-exponentially stability remains open. The conjecture is that for less than n

magnetic fields the system is not exponentially stable.
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