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Abstract: We consider the mathematical model for a plate in a bounded reference con�guration Ω ⊂ Rn,

�rst with n = 2, which is interacting with n = 2 magnetic �elds. The latter have a damping e�ect. It will

be shown that the arising system generates an analytic semigroup and that the estimated exponential

decay rate tends to zero if the n constant directing magnetic vectors tend to become linearly dependent.

Then, an analogous model for n = 3 will be considered. In the case that there are less than n magnetic

�elds we prove the strong stability exemplarily for cubes.

1 Introduction

We consider the mathematical model for a plate in a bounded reference con�guration Ω ⊂
Rn, �rst with n = 2, which is interacting with n magnetic �elds. The latter have a damping

e�ect which raises the question whether the arising system gives an analytic semigroup or, at

least, if through the damping by n magnetic �elds, the system becomes exponentially stable.

Concerning the latter we will then elaborate that the estimated decay rate tends to zero if the n

constant determining magnetic vectors (H⃗1, H⃗2, see below) tend to become linearly dependent.

Afterwards, an analogous model for n = 3 will be considered. If there are less than n magnetic

�elds, exponential stability or analyticity is not expected. In this case we prove the strong

stability exemplarily for the rectangle Ω = (−π, π)2 in two dimensions, resp. for the cube Ω =

(−π, π)3 in three dimensions.

The model we study in two dimensions, n = 2, is given by

ρ0utt + d∆2u− α1( rot roth
1) · H⃗1 − α2( rot roth

2) · H⃗2 = 0 in Ω× [0,∞), (1.1)

ρ1h
1
t + rot roth1 + β1 rot rot (utH⃗

1) = 0 in Ω× [0,∞), (1.2)

ρ2h
2
t + rot roth2 + β2 rot rot (utH⃗

2) = 0 in Ω× [0,∞), (1.3)

(j = 1, 2 :) div hj = 0 in Ω× [0,∞), (1.4)

with boundary conditions

u = ∆u = 0, ν × hj = 0, j = 1, 2, (1.5)

and initial conditions

u(·, 0) = u0, ut(·, 0) = u1, hj(·, 0) = hj0, j = 1, 2. (1.6)
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Here, Ω ⊂ R2 is a smoothly bounded, simply connected domain, and u ∈ R and hj ∈ R2, j = 1, 2,

denote the displacement resp. the magnetic �elds. Here we assume that ρ0 ρ1, ρ2, d, α1, α2, β1, β2

are positive constants. The vectors H⃗1, H⃗2 ∈ R2 are constant and are assumed to satisfy:

H⃗1 and H⃗2 are linearly independent. (1.7)

In other words, we assume

D2 := det
(
H⃗1, H⃗2

)
̸= 0. (1.8)

The meaning of � rot � is here as follows:

F : R2 −→ R2, then rotF := ∂1F2 − ∂2F1,

f : R2 −→ R, then rot f := (∂2f,−∂1f)
′.

The vector product is correspondingly given by

ν × hj = ν1 h
j
2 − ν2 h

j
1.

Then it holds, as in three dimensions,

∆ = ∇ div − rot rot .

We remark that condition (1.4) could be derived from the di�erential equations assuming it

only for the initial value, i.e. at t = 0. From the mathematical point of view system (1.1)�(1.4)

is a plate equation coupled with a parabolic equation for the magnetic �eld.

The case of only one magnetic �eld, i.e. h2 ≡ 0, for which one can �nd the modeling

e.g. in [5, 8, 17], has found attention before, also with nonlinear models, but not yet much.

The polynomial stability has been proved in [12] for the boundary conditions ν · hj = 0, ν ×
rothj = 0, u = ∂u/∂ν = 0. With our contribution we initiate to investigate the analyticity

and exponential stability of the system, which are open questions for this fourth-second-order

coupled system.

This model is closely related to the thermoelastic plate model, where we have the tempera-

ture instead of the magnetic �eld, and where the parabolic equation is, up to the coupling term,

the classical heat equation. The main di�erence, and also the main problem, consists in the cou-

pling terms. The thermoelastic coupling term makes it possible to show that the corresponding

thermoelastic semigroup is analytic, see [10]. Instead, it is not known whether the semigroup

associated to the magneto-elastic plate here, with one magnetic �eld, is analytic or at least ex-

ponentially stable in bounded domains. Here it will be our task to investigate the situation and

the impact of two magnetic �elds and answer these questions.

The model with one magnetic �eld is also related to the second -order magneto-elastic model,

where the fourth-order bi-Laplacean∆2 is replaced by the second-order operator elasticity −µ∆−
(λ + µ)∇ div . Here the strong stability � the energy decays to zero for each �xed initial data,

but not necessarily uniformly � was proved in [19], while the polynomial stability was proved
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for a class of two- and three-dimensional domains in [14, 16]. On the other hand, the lack of

exponential stability was shown in [4], using microlocal analysis. We remark that also the Cauchy

problem, i.e. for Ω = Rn, has been studied, and polynomial decay rates were obtained, see [1, 13].

In n = 3 space dimensions, the system of equations turns into

ρ0utt + d∆2u− α1 rot roth
1 · H⃗1 − α2 rot roth

2 · H⃗2 − α3 rot roth
3 · H⃗3 = 0, (1.9)

ρ1h
1
t + rot roth1 + β1 rot rot (utH⃗

1) = 0, (1.10)

ρ2h
2
t + rot roth2 + β2 rot rot (utH⃗

2) = 0, (1.11)

ρ3h
3
t + rot roth3 + β3 rot rot (utH⃗

3) = 0, (1.12)

(j = 1, 2, 3 :) div hj = 0, (1.13)

with boundary conditions

u = ∆u = 0, ν × hj = 0, j = 1, 2, 3, (1.14)

and initial conditions

u(·, 0) = u0, ut(·, 0) = u1, hj(·, 0) = hj0, j = 1, 2, 3. (1.15)

Here, Ω ⊂ R3 is a smoothly bounded, simply connected domain. Our main results are, for both

dimensions n = 2, 3:

� n magnetic �elds are dealt with.

� The analyticity of the semigroup and, consequently, the exponential stability are obtained:

Theorem 3.7 and Corollary 3.8.

� As a consequence of the analyticity and the compactness of the resolvent operators com-

pactness of the semigroup is proved: Corollary 3.9.

� The exponential stability via multiplier methods providing information on the dependence

of the rate of the decay in terms of the degree of linear independence of the vectors H⃗j ,

j=1,2(,3) is obtained: Theorem 4.2 and Theorem 5.1.

� The strong stability in the case of less than n magnetic �elds is proved for cubes: Theo-

rem 6.2.

We remark that, given the exponential stability property and and the compactness of the semi-

group of the semigroup at hand, nonlinear problems for small or even large data, depending on

the nonlinearity, seem accessible.

The paper is organized as follows. In Section 2 we provide the well-posedness. In Section 3,

the analyticity of the associated semigroup is proved using semigroup arguments and estimates

on the resolvents along the imaginary axes, also giving the exponential stability. With further

sophisticated estimates, the exponential stability is then proved in Section 4 (n = 2) and in
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Section 5 (n = 3) once more, now using multiplier (energy) methods, allowing a characterization

of the decay rate in terms of the determinants D2 and D3, respectively. In Section 6 the strong

stability is proved in the situation of less than n magnetic �elds for a square resp. a cube.

Throughout the paper, we use standard notation, in particular we use the Sobolev spaces

L2 = L2(Ω), and Hs = W s,2(Ω), s ∈ N0, with their associated norms ∥ · ∥ respectively ∥ · ∥Hs .

For the inner product in L2 we use the notation ⟨·, ·⟩, and we write ∂j short for
∂

∂xj
, and ∂t for

∂
∂t .

2 Well-posedness

In order to formulate the problem as evolution equation of �rst-order in time, we consider in

n = 2 space dimensions as phase space

H :=
(
H2(Ω) ∩H1

0 (Ω)
)
× L2(Ω)× L2

∗(Ω)× L2
∗(Ω),

where

L2
∗ := {h ∈ (L2)n, | div h = 0} (n = 2, 3).

Taking the norm

∥V ∥2H :=

∫
Ω

[ d
ρ0

|∆u|2 + |v|2 + α1ρ1
β1ρ0

|h1|2 + α2ρ2
β2ρ0

|h2|2
]
dx (2.1)

for

V :=


u

v

h1

h2

 .

and the associated inner product (·, ·)H, H is a Hilbert space.

In n = 3 space dimensions we have analogously

H :=
(
H2(Ω) ∩H1

0 (Ω)
)
× L2(Ω)× L2

∗(Ω)× L2
∗(Ω)× L2

∗(Ω)

and

∥V ∥2H :=

∫
Ω

[ d
ρ0

|∆u|2 + |v|2 + α1ρ1
β1ρ0

|h1|2 + α2ρ2
β2ρ0

|h2|2 + α3ρ3
β3ρ0

|h3|2
]
dx. (2.2)

For two space dimensions we introduce the operator A by

AV :=


v

− d
ρ0
∆2u+ α1

ρ0
( rot roth1) · H⃗1 + α2

ρ0
( rot roth2) · H⃗2

−β1

ρ1
rot rot (vH⃗1)− 1

ρ1
rot roth1

−β2

ρ2
rot rot (vH⃗2)− 1

ρ2
rot roth2

 ,
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and in three space dimensions by

AV :=


v

− d
ρ0
∆2u+ α1

ρ0
( rot roth1) · H⃗1 + α2

ρ0
( rot roth2) · H⃗2 + α3

ρ0
( rot roth3) · H⃗2

−β1

ρ1
rot rot (vH⃗1)− 1

ρ1
rot roth1

−β2

ρ2
rot rot (vH⃗2)− 1

ρ2
rot roth2

−β3

ρ3
rot rot (vH⃗3)− 1

ρ3
rot roth3


for V in the domain

D(A) := {V ∈ H |u ∈ H4,∆u ∈ H1
0 , h

j ∈ H2, ν × hj = 0 on ∂Ω, j = 1, 2(, 3) }. (2.3)

The original initial-boundary value problem now turns into the �rst-order evolution equation

Vt(t) = AV (t), V (0) = V0, (2.4)

where

V (t) :=


u(·, t)
ut(·, t)
h1(·, t)
h2(·, t)
[h3(·, t)]

 , V0 :=


u0

u1

h10
h20
[h30]

 .

The operator A is densely de�ned and dissipative, it satis�es

Re (AV, V )H = − α1

β1ρ0

∫
Ω
| roth1|2dx− α2

β2ρ0

∫
Ω
| roth|2

[
− α3

β3ρ0

∫
Ω
| roth|3dx

]
≤ 0. (2.5)

The properties of the model that we deal with here depend on the properties of the resolvent

operator over the imaginary axes, that is de�ned by the system

iλU −AU = F

for λ ∈ R. In terms of its components the above system is given by

iλu− v = f1, (2.6)

iλu+
d

ρ0
∆2u− α1

ρ0
( rot roth1) · H⃗1 − α2

ρ0
( rot roth2) · H⃗2 = f2, (2.7)

iλh1 +
β1
ρ1

rot rot (vH⃗1) +
1

ρ1
rot roth1 = f3, (2.8)

iλh2 +
β2
ρ2

rot rot (vH⃗2) +
1

ρ2
rot roth2 = f4. (2.9)

Now we show that λ = 0 ∈ ρ(A) (resolvent set). For this purpose let F ∈ H, and we look for

a solution V ∈ D(A) to AV = F = (f1, f2, f3, f4), and suppose w.l.o.g. n = 2. So let v := −f1,

then

v ∈ H2 ∩H1
0 , ∥v∥H2 ≤ c∥F∥H, (2.10)
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with c > 0 not depending on F . Now we look for j = 1, 2, at the Maxwell system

− 1

ρj
rot rothj = −f2+j +

βj
ρj

rot rot (vH⃗j)

div hj = 0,

ν × hj = 0 (∂Ω).

This is uniquely solvable in a simply connected domain with smooth boundary and using (2.10),

hj ∈ H2, ∥hj∥H2 ≤ c∥F∥H.

For the last estimate we used the inequality

∥hj∥H2 ≤ c∥ rot rothj∥, (2.11)

cf. [20]. Finally, we look at

− d

ρ0
∆2u = −f2 −

α1

ρ0
( rot roth1) · H⃗1 − α2

ρ0
( rot roth2) · H⃗2,

u = ∆u = 0 (∂Ω).

This now has a unique solution satisfying

u ∈ H4 ∩H1
0 , ∆u ∈ H1

0 , ∥u∥H4 ≤ c∥F∥H.

Altogether we have found a unique V ∈ D(A) solving AV = F and satisfying ∥V ∥H ≤ c∥F∥H.

Remark 2.1. The last estimates imply, using Rellich's compactness theorem, that the inverse

A−1 is compact.

Remark 2.2. By (2.5) the solution V to iλV −AV = F , for any λ ∈ R, satis�es

α1

β1ρ0

∫
Ω
| roth1|2dx+

α2

β2ρ0

∫
Ω
| roth|2

[
+

α3

β3ρ0

∫
Ω
| roth|3dx

]
= Re (V, F )H (2.12)

By the Lumer-Phillips theorem we conclude

Theorem 2.3. The operator A is the in�nitesimal generator of a C0-semigroup of contractions(
e tA)

t≥0
on H. For any initial data V0 ∈ D(A), problem (2.4) has a unique solution V satisfying

V ∈ C1([0,∞),H) ∩ C0([0,∞), D(A)).

3 Analyticity of the semigroup

We will prove the analyticity for two and three space dimensions using the following characteri-

zation that can be found in [18, 11].
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Theorem 3.1. A contraction semigroup T = (T (t))t≥0 generated by A on a Hilbert space H is

analytic if and only if the following two conditions holds.

iR ⊂ ϱ(A) (3.1)

lim
λ∈R, |λ|→∞

sup |λ|∥(iλ−A)−1∥ < ∞ (3.2)

Lemma 3.2. Under the above notations the operator A associated to system (1.1)-(1.4) (respec-

tively (1.9)-(1.13)) satis�es condition (3.1).

Proof: Since A−1 is compact it is enough to show that there are no imaginary eigenvalues.

Suppose that there exist U ∈ D(A) satisfying

iλU −AU = 0

we conclude by (2.12) that hj = 0, for j = 1, 2(, 3). Using (2.8) and (2.9) we get

rot rot (vH⃗j) = 0 j = 1, 2(, 3).

Now, in two dimensions, this is equivalent to the linear system
0 −H1

2 0 H1
1

H1
2 0 −H1

1 0

0 −H2
2 0 H2

1

H2
2 0 −H1

2 0


︸ ︷︷ ︸

:=H2


∂2
1v

∂2∂1v

∂1∂2v

∂2
2v

 = 0, (3.3)

Since detH2 = D2
2 ̸= 0 we conclude v = 0. Using (2.6) we get that u = 0 so we have that U = 0,

proving (3.1) in the two-dimensional case.

In three dimensions, we obtain analogously

0 −H1
2 −H1

3 0 H1
1 0 0 0 H1

1

H1
2 0 0 −H1

1 0 −H1
3 0 0 H1

2

H1
3 0 0 0 H1

3 0 −H1
1 −H1

2 0

0 −H2
1 −H2

3 0 H2
1 0 0 0 H2

1

H2
2 0 0 −H2

1 0 −H2
3 0 0 H2

2

H2
3 0 0 0 H2

3 0 −H2
1 −H2

2 0

0 −H3
2 −H3

3 0 H3
1 0 0 0 H3

1

H3
2 0 0 −H3

1 0 −H3
3 0 0 H3

2

H3
3 0 0 0 H3

3 0 −H3
1 −H3

2 0


︸ ︷︷ ︸

:=H3



∂2
1v

∂1∂2v

∂1∂3v

∂2∂1v

∂2
2v

∂2∂3v

∂3∂1v

∂3∂2v

∂2
3v


= 0, (3.4)

satis�es (checked by Maple©)

detH3 = −2(D3)
3 ̸= 0.
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So we get again v = 0, then u = 0 and �nally U = 0, thus proving (3.1) also in the three-

dimensional case.

We remark that, with (3.1), we now already have the strong stability of the semigroup.

To prove (3.2) we start with

Lemma 3.3. For λ large enough the following inequalities hold

∥∆2u∥L2 ≤ c|λ|
(
∥v∥L2 + ∥hi∥L2 + ∥∆u∥L2 +

1

|λ|
∥F∥H

)
≡ c|λ|E, (3.5)

∥ rot rothj∥2 ≤ c|λ|
(
∥hi∥L2 + ∥∆u∥L2 +

1

|λ|
∥F∥H

)
, j = 1, 2(, 3). (3.6)

Moreover we have

∥u∥H1 ≤ c

|λ|1/2
∥U∥H +

c

|λ|1/2
∥U∥1/2H ∥F∥1/2H , ∥v∥H1 ≤ c|λ|1/2∥U∥H + c∥U∥1/2H ∥F∥1/2H , (3.7)

where c is a positive constant not depending on λ.

Proof: We consider the two-dimensional case, the three-dimensional case is similar. From

(2.7) we get

∥∆2u∥L2 ≤ c∥iλv∥L2 + c∥( rot roth1) · H⃗1∥L2 + c∥( rot roth2) · H⃗2∥L2 + c∥F∥H. (3.8)

By (2.8) and (2.9) we have

∥( rot rothj) · H⃗1∥L2 ≤ c|λ|
(
∥hj∥L2 + ∥∆u∥L2

)
+ c∥F∥H, j = 1, 2(, 3).

Inserting this inequality into (3.8) we get

∥∆2u∥L2 ≤ c|λ|
(
∥v∥L2 + ∥h1∥L2 + ∥h2∥L2 + ∥∆u∥L2

)
+ c∥F∥H. (3.9)

Using the same ideas we get (3.6), hence the �rst part of this Lemma follows. Using interpolation

once more we get

∥u∥H1 ≤ c∥u∥1/2
L2 ∥u∥

1/2
H2

≤ c

|λ|1/2
∥v − f1∥1/2L2 ∥u∥

1/2
H2

≤ c

|λ|1/2
∥v∥1/2

L2 ∥u∥
1/2
H2 +

c

|λ|1/2
∥f1∥1/2L2 ∥u∥

1/2
H2 .

Similarly,

∥v∥H1 ≤ c∥v∥1/2
L2 ∥v∥

1/2
H2

≤ c∥v∥1/2
L2 ∥iλ∆u−∆f1∥1/2L2

≤ c|λ|1/2∥U∥H + c∥U∥1/2H ∥F∥1/2H .

Hence our conclusion follows. □

8



Lemma 3.4. For any ϵ > 0 there is cϵ > 0 such that for j = 1, 2

∥hj∥ ≤ ϵ∥U∥H +
cϵ
|λ|

∥F∥H, (3.10)

where cϵ → ∞ as ϵ → 0.

Proof: For any fj such that div fj = 0 there exists exactly one solution to

iλhjf + rot rothjf = fj in Ω, ν × hjf = 0 on ∂Ω, (3.11)

cf. [9]. Let us decompose the function hj into two components:

hj = hjf + (hj − hjf ) ≡ hjf + hjr.

Since ν × hj = ν × hjf = 0 we get ν × hjr = 0. Moreover, taking the di�erence of equation (2.8)

with (3.11) with (and (2.9) also) we get

iλhjr + rot rothjr + βj rot rot (vH⃗
j) = 0. (3.12)

Multiplying (3.11) by iλhjf and taking the real part, then multiplying (3.11) by rot rothjf and

taking the real part we get

∥λhjf∥L2 ≤ c∥F∥H, ∥ rot rothjf∥L2 ≤ ∥F∥H. (3.13)

Multiplying (3.11) by iλhjf and taking the imaginary part and using the �rst inequality in (3.13)

we get

|λ|1/2∥ rothjf∥L2 ≤ c∥F∥. (3.14)

Using equation (3.12) we conclude

|λ|∥hjr∥H−1 ≤ c∥ rothjr∥+ c∥v∥H1 .

Recalling that hj = hjf + hjr and using (3.14) we get

∥ rothir∥ = ∥ rothr − rothrf∥ ≤ ∥ rothr∥+ |λ|−1/2∥F∥.

From Lemma 3.3 we get ∥v∥H1 ≤ c|λ|1/2∥U∥H + c∥U∥1/2H ∥F∥1/2H , and using (2.12) we arrive at

|λ|∥hjr∥H−1 ≤ c|λ|1/2∥U∥H + c∥U∥1/2H ∥F∥1/2H + |λ|−1/2∥F∥. (3.15)

Using interpolation and recalling that ∥v∥ ≤ ∥U∥H we get

∥hjr∥L2 ≤ c∥hjr∥
1/2
H−1∥ rothjr∥

1/2
L2 .

Using (3.15), (2.12) and (3.14) we get

∥hjr∥L2 ≤ c

|λ|1/2
(
|λ|1/2∥U∥H + c∥U∥1/2H ∥F∥1/2H + |λ|−1/2∥F∥

)1/2
(∥ roth∥L2 + |λ|−1/2∥F∥)1/2

≤ c

|λ|1/2
(
|λ|1/2∥U∥H + c∥U∥1/2H ∥F∥1/2H + |λ|−1/2∥F∥

)1/2
(∥U∥1/2H ∥F∥1/2H + |λ|−1/2∥F∥)1/2

≤ ϵ∥U∥H +
ϵ

|λ|
∥F∥H.
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Hence, using (3.13), we obtain

∥hj∥ ≤ ∥hjr∥L2 + ∥hjf∥L2 ≤ ϵ∥U∥H +
cϵ
|λ|

∥F∥H

and our conclusion follows. □

Next we have the estimate

Lemma 3.5. For the solution of the resolvent equation, we have

∥∆u∥2 ≤ ϵ∥U∥2H +
cϵ
|λ|2

∥F∥2H. (3.16)

Proof: From (2.8) and (2.9) we have

iλh1 + rot roth1 + β1iλ rot rot (uH⃗
1) = f3 + β1 rot rot (f1H⃗

1),

iλh2 + rot roth2 + β2iλ rot rot (uH⃗2) = f4 + β2 rot rot (f1H⃗
2),

leading to

β1 rot rot (uH⃗
1) = −h1 − 1

iλ
rot roth1 +

1

iλ
F1, (3.17)

β2 rot rot (uH⃗
2) = −h2 − 1

iλ
rot roth2 +

1

iλ
F2, (3.18)

where

F1 :=
(
f3 + β1 rot rot (f1H⃗

1)
)
, F2 :=

(
f4 + β2 rot rot (f1H⃗

2)).

Multiplying these equations by rot rot (uH⃗j) for j = 1, 2, we get

β1

∫
Ω
| rot rot (uH⃗j)|2 dx = −

∫
Ω
rot rot (uH⃗j)hj dx− 1

iλ

∫
Ω
rot rot (uH⃗j) rot rothj dx

+
1

iλ

∫
Ω
rot rot (uH⃗j)Fj dx

= −
∫
Ω
rot rot (uH⃗j)hj dx− 1

iλ

∫
Ω
rot rot rot (uH⃗j) rothj dx

− 1

iλ

∫
∂Ω

rot rot (uH⃗j)ν × rothj dΓ︸ ︷︷ ︸
=:J

+
1

iλ

∫
Ω
rot rot (uH⃗j)Fj dx︸ ︷︷ ︸
≤ c

|λ|∥U∥H∥F∥H

Hence ∫
Ω
| rot rot (uH⃗j)|2 dx ≤ c

∫
Ω
|hj |2 dx+

ϵ

|λ|

∫
Ω
| rot rot rot (uH⃗j)|2 dx+

J +
cϵ
|λ|

∥U∥H∥F∥H. (3.19)

Using interpolation it follows∫
Ω
| rot rot rot (uH⃗j)|2 dx ≤ c∥u∥H2∥u∥H4

≤ c∥∆u∥L2∥∆2u∥L2 .
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Using Lemma 3.4 we get∫
Ω
| rot rot rot (uH⃗j)|2 dx ≤ c|λ|∥∆u∥L2

(
∥v∥L2 + ∥hj∥L2 + ∥∆u∥L2

)
+ c∥∆u∥L2∥F∥H.

Note that

J ≤ c

|λ|
∥u∥H5/2∥hj∥H3/2

≤ c

|λ|

(
∥u∥3/4

H2 ∥u∥
1/4
H4

)(
∥hi∥1/2

H1 ∥hj∥
1/2
H2

)
≤ c

|λ|

(
∥∆u∥3/4

L2 ∥∆2u∥1/4
L2

)(
∥hj∥1/2

H1 ∥hi∥
1/2
H2

)
.

Recalling the de�nition of E given in (3.5) and using Lemma 3.3 we obtain

J ≤ c

|λ|1/4
(
∥∆u∥3/4

L2 E
1/4
)(

∥hi∥1/2
H1E

1/2
)

≤ c

|λ|1/4
E3/2∥hi∥1/2

H1

≤ ϵE2 +
cϵ
|λ|

∥hi∥2H1 .

Inserting this inequality into (3.19) we get∫
Ω
| rot rot (uH⃗j)|2 dx ≤ c

∫
Ω
|hj |2 dx+ ϵ

∫
Ω
|v|2 + |∆u|2 dx+

cϵ
|λ|

∥U∥H∥F∥H

+
cϵ
|λ|2

∥F∥2H. (3.20)

Since H⃗1 and H⃗2 are linearly independent, we conclude from (3.20) for j = 1, 2∫
Ω
|∆u|2 dx ≤ c

∫
Ω
|h1|2 + |h2|2 dx+ ϵ

∫
Ω
|v|2 dx+

cϵ
|λ|

∥U∥H∥F∥H +
cϵ
|λ|2

∥F∥2H.

Now using Lemma 3.4 our conclusion follows. □

Finally we estimate v starting with

Lemma 3.6. Under the above conditions we have∫
Ω
|v|2 dx ≤ ϵ∥U∥2H +

cϵ
|λ|2

∥F∥2H.

Proof: Multiplying equation (2.7) by iλv we get∫
Ω
|λv|2 dx+ d

∫
Ω
∆uiλ∆v dx+ α1

∫
Ω
roth1 · rot (iλvH1) dx+

α2

∫
Ω
( roth2) · rot (iλvH2) dx =

∫
Ω
f2iλv dx.

11



Using (2.6) we arrive at∫
Ω
|λv|2 dx = diλ

∫
Ω
∆u∆v dx+iλα1

∫
Ω
h1 · rot rot (vH1) dx+ α2iλ

∫
Ω
(h2) · rot rot (vH2) dx︸ ︷︷ ︸

≤c|λ|2∥h∥2+c|λ|2∥∆u∥2+c|λ|∥U∥H∥F∥H

+

∫
Ω
f2iλv dx

≤ c|λ|2
∫
Ω
|∆u2| dx+ c|λ|2

∫
Ω
|h1|2 + |h2|2 dx+ c|λ|∥U∥H∥F∥H, (3.21)

where we used∣∣∣∣iλαj

∫
Ω
hj · rot rot (vHj) dx

∣∣∣∣ =

∣∣∣∣iλαj

∫
Ω
hj · rot rot (iλu− f1)H

j) dx

∣∣∣∣
≤ c|λ|2∥hj∥L2∥ rot rotu∥L2 + c|λ|∥hj∥L2∥ rot rot f1∥L2

≤ c|λ|2∥hi∥L2∥∆u∥L2 + c|λ|∥hi∥L2∥∆f1∥L2

≤ c|λ|2∥h∥2 + c|λ|2∥∆u∥2 + c|λ|∥U∥H∥F∥H.

From Lemma 3.4, Lemma 3.5 and (3.21) we get∫
Ω
|λv|2 dx ≤ ϵ|λ|2∥U∥2H + cϵ∥F∥2H,

�nishing the proof. □

Now we can prove the analyticity.

Theorem 3.7. The semigroup associated to system (1.1)-(1.4) is analytic.

Proof: From Lemma 3.4, Lemma 3.5 and Lemma 3.6 we get∫
Ω
|v|2 + |∆u|2 + |h1|2 + |h2|2 dx ≤ ϵ∥U∥2H +

ϵ

|λ|2
∥F∥2H.

This is equivalent to

∥U∥2H ≤ ϵ∥U∥2H +
cϵ
|λ|2

∥F∥2H.

So we have

∥U∥2H ≤ cϵ
|λ|2

∥F∥2H

which implies

∥(iλI −A)−1F∥2H ≤ cϵ
|λ|2

∥F∥2H.

Using Lemma 3.2 and Theorem 3.1 our conclusion follows. □

As usual we can conclude

Corollary 3.8. The semigroup associated to system (1.1)-(1.4) is exponentially stable, i.e. there

are k > 0 and C > 0 sucht that for all V0 ∈ H and all t ≥ 0 we have

∥e tAV0∥H ≤ C∥V0∥H e−k t. (3.22)
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Corollary 3.9. The semigroup (eAt)t≥0 associated to system (1.1)-(1.4) is uniformly continuous

for t > 0 and a compact operator over the phase space H.

Proof: Since the semigroup is analytic, in particular it is a di�erentiable semigroup, that is

the semigroup is di�erentiable in�nitely many times in the uniform operator topology for t > 0.

This implies that the semigroup is uniformly continuous. Finally, using Remark 2.1 and Theorem

3.3 of [18, p. 48] we get that the semigroup is compact. □

In the next two sections, we will prove the exponential stability by the energy (multiplier)

method directly, in particular in order to get information on a possible dependence of the decay

rate k in Corollary 3.8 on the degree of linear independence of the vectors H⃗j , j = 1, 2(, 3),

respectively in terms of the determinants D2 and D3.

4 The exponential decay rate and the magnetic vectors H⃗1, H⃗2

We consider the system in two space dimensions from the introduction, (1.1)-(1.6), i.e.

ρ0utt + d∆2u− α1 rot roth
1 · H⃗1 − α2 rot roth

2 · H⃗2 = 0, (4.1)

ρ1h
1
t + rot roth1 + β1 rot rot (utH⃗

1) = 0, (4.2)

ρ2h
2
t + rot roth2 + β2 rot rot (utH⃗

2) = 0, (4.3)

(j = 1, 2 :) div hj = 0, (4.4)

with boundary conditions

u = ∆u = 0, ν × hj = 0, j = 1, 2, (4.5)

and initial conditions

u(·, 0) = u0, ut(·, 0) = u1, hj(·, 0) = hj0, j = 1, 2. (4.6)

To show the exponential stability, let us introduce the �rst order energy

E1(t) :=
d

ρ0
∥∆u(t, ·)∥2 + ∥ut(t, ·)∥2 +

α1ρ1
β1ρ0

∥h1(t, ·)∥2 + α2ρ2
β2ρ0

∥h2(t, ·)∥2

Then by denoting

E1(t) ≡ E1(u, h
1, h2; t)

For initial data taking in D(A) we de�ne the second-order term E2 by

E2(t) := E1(ut, h
1
t , h

2
t ; t) =

d

ρ0
∥∆ut(t, ·)∥2 + ∥utt(t, ·)∥2 +

α1ρ1
β1ρ0

∥h1t (t, ·)∥2 +
α2ρ2
β2ρ0

∥h2t (t, ·)∥2,

arising as �rst-order term for the di�erentiated (in time) system (4.1)�(4.3). For the sum

End(t) := E1(t) + E2(t) (4.7)
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the exponential decay will be proved. Let D2 = det
(
H⃗1 H⃗2

)
again.

Using multiplicative techniques, we easily get, cf. (2.5),

d

dt
End(t) = − 2α1

ρ0β1

(
∥ roth1∥2 + ∥ roth1t ∥2

)
− 2α2

ρ0β2

(
∥ roth2∥2 + ∥ roth2t ∥2

)
≤ −c

(
∥h1∥2H1 + ∥h2∥2H1 + ∥h1t ∥2H1 + ∥h2t ∥2H1

)
, (4.8)

where we used the simple connectedness for the last inequality, see [3, p. 356] or [9, p.157], and

where we mostly drop the parameters t, x. Moreover, c will denote generic positive constants not

depending on D2 (as D2 → 0).

Let us introduce the functional

J := −ρ1

(
⟨h1, ut H⃗1⟩+ ⟨h2, ut H⃗2⟩

)
.

Lemma 4.1. Under the above notations we have for any ε > 0

d

dt
J ≤ −c|D2|2

(
∥ut∥2 + ∥∇ut∥2

)
+ ε

ρ1
ρ0

∥∇∆u∥2 + ε
(
∥utt∥2 + ∥∆ut∥2

)
+

+
c

ε

(
∥h1∥2H1 + ∥h2∥2H1

)
+ c

2∑
k=1

∥hkt ∥2. (4.9)

Proof: Multiplication of (4.2) by ut H⃗
1 resp. of (4.3) by ut H⃗

2 yields, for j = 1, 2,

−ρ1
d

dt
⟨hj , ut H⃗j⟩ = ⟨ rothj , rot (ut H⃗j)⟩ − βj∥ rot (ut H⃗j)∥2 − ρ1⟨hj , utt H⃗j⟩. (4.10)

Using the di�erential equation (4.1) for utt, we have

ρ1⟨hj , utt H⃗j⟩ = −ρ1⟨hj ,
d

ρ0
∆2u H⃗j⟩+ ρ1α1

ρ0
⟨hj , rot roth1 · H⃗1 H⃗j⟩+

ρ1α2

ρ0
⟨hj , rot roth2 · H⃗2 H⃗j⟩

= −dρ1
ρ0

∫
∂Ω

hj · H⃗j ∂

∂ν
∆u ds︸ ︷︷ ︸

=:I0,jR

+
dρ1
ρ0

⟨∇(hj · H⃗j),∇∆u⟩+

2∑
k=1

ρkαk

ρ0
⟨
(
rot (hj1 H⃗

j
1) + rot (hj2 H⃗

j
2)
)
· H⃗k, rothk⟩+

2∑
k=1

ρkαk

ρ0

∫
∂Ω

(
ν2H⃗

k
1 − ν1H⃗

k
)
( rothk) (hj · H⃗j) ds︸ ︷︷ ︸

=:Ik,jR

. (4.11)

Thus,

−ρ1⟨hj , utt H⃗j⟩ ≤ ε
ρ1
ρ0

∥∇∆u∥2 + c

ε
∥hj∥2H1 +

2∑
k=0,j=1

|Ik,jR |. (4.12)
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Combining (4.10) and (4.12), we obtain

− d

dt
ρ1

(
⟨h1, ut H⃗1⟩+ ⟨h2, ut H⃗2⟩

)
≤ −β1

2

(
∥ rot (ut H⃗1)∥2 + ∥ rot (ut H⃗2)∥2

)
+

c

ε

(
∥h1∥2H1 + ∥h2∥2H1

)
+ ε

ρ1
ρ0

∥∇∆u∥2 +
2∑

k=0,j=1

|Ik,jR |. (4.13)

The boundary terms are estimated for j = 1, 2 as follows.

|I0,jR | = |dρ1
ρ0

∫
∂Ω

hj · H⃗j ∂

∂ν
∆u ds| ≤ c∥hj∥H1∥∇∆u∥H1 ≤ c∥hj∥H1∥∆2u∥.

Using the di�erential equations (4.1)-(4.3) we obtain

|I0,jR | ≤ c∥hj∥H1

(
∥utt∥+

2∑
k=1

∥ rot rothk∥

)

≤ c∥hj∥H1

(
∥utt∥+

2∑
k=1

(
∥hkt ∥+ ∥ rot rot (utH⃗k)∥

))

≤ c∥hj∥H1

2∑
k=1

∥hkt ∥+ c∥hj∥H1 (∥utt∥+ ∥∆ut∥) .

This implies

|I0,jR | ≤ c

2∑
k=1

∥hkt ∥2 +
c

ε
∥hj∥2H1 + ε∥utt∥2 + ε∥∆ut∥2. (4.14)

Moreover,

|I1,jR |+ |I2,jR | ≤
2∑

k=1

∣∣∣∣ρkαk

ρ0

∫
∂Ω

(
ν2H⃗

k
1 − ν1H⃗

k
)
( rothk) (hj · H⃗j) ds

∣∣∣∣
≤ c

(
2∑

k=1

∥ rothk∥H1

)
∥hj∥H1

≤ c

2∑
k=1

∥hkt ∥2 +
c

ε
∥hj∥2H1 + ε∥∆ut∥2. (4.15)

In the last estimate we used (2.11) again. The negative terms

−β1
2

(
∥ rot (ut H⃗1)∥2 + ∥ rot (ut H⃗2)∥2

)
in (4.13) yield a negative term −∥∇ut∥2 as follows. Let, for k = 1, 2,

fk := rot (utH⃗
k) = ∂1utH⃗

k
2 − ∂2utH⃗

k
1 .

Considering the above identity as system for the unknowns ∂1ut and ∂2ut, we conclude, for

m = 1, 2, since D2 = det
(
H⃗1 H⃗2

)
̸= 0,

∂mut =
1

D2

(
H⃗1

mf2 − H⃗2
mf1

)
, (4.16)
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hence

|∇ut|2 ≤
c

|D2|2
(
| rot (utH⃗1)|2 + | rot (utH⃗2)|2,

)
implying

c
(
∥ut∥2 + ∥∇ut∥2

)
≤ 1

|D2|2
(
∥ rot (utH⃗1)∥2 + ∥ rot (utH⃗2)∥2

)
. (4.17)

Combining (4.13), (4.14), (4.15) and (4.17) and recalling the de�nition of J we obtain inequality

(4.9). Hence our conclusion follows. □

Theorem 4.2. There exist K2 > 0 and κ2 > 0 such that for the solution to (4.1) � (4.6) and

all t ≥ 0

End(t) ≤ K2End(0)e
−κ2 t

holds. κ2 = κ2(D2) = O
(
|D2|2

)
as D2 → 0.

As we can see from the proportionality, the decay rate κ2 vanishes if H⃗1 and H⃗2 become

parallel, and it is strongest if H⃗1 and H⃗2 are orthogonal to each other. Actually, |D2| describes
the volume of the parallelogram spanned by H⃗1 and H⃗2 and equals for these unit vectors | sin(φ)|,
where φ is the angle between the vectors.

Proof of Theorem 4.2: The multiplier used are a modi�cation of those also used for a ther-

moelastic system in [15], while essential new problems appear here arising through the magnetic

�eld.

Now we multiply (4.1) by ∆u to get

d

dt
((ρ0⟨ut,∆u⟩) = −ρ0∥ut∥2 + d∥∇∆u∥2 +

2∑
k=1

αk⟨
(
rot rothk

)
H⃗k,∆u⟩

= −ρ0∥ut∥2 + d∥∇∆u∥2 +
2∑

k=1

αk⟨ rothk, rot (∆uH⃗k)⟩

whence we obtain

d

dt
((−ρ0⟨ut,∆u⟩) ≤ ρ0∥ut∥2 −

d

2
∥∇∆u∥2 + c

(
∥h1∥2H1 + ∥h2∥2H1

)
. (4.18)

Using Lemma 4.1 we have that

d

dt

(
J(t)− c

2
|D2|2⟨ut,∆u⟩

)
≤ − c

2
|D2|2

(
∥ut∥2 + ∥∇ut∥2 +

d

2ρ0
∥∇∆u∥2

)
+

+ε
(
∥utt∥2 + ∥∆ut∥2

)
+

c

ε

2∑
k=1

∥hk∥2H1

+c
2∑

k=1

∥hkt ∥2 (4.19)
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Now we multiply (4.1) by utt and obtain

0 = ρ0∥utt∥2 + d⟨∆2u, utt⟩ − ⟨α1 rot roth
1 · H⃗1 + α2 rot roth

2 · H⃗2, utt⟩

= ρ0∥utt∥2 +
d

dt
⟨d∆u,∆ut⟩ − d∥∆ut∥2 −

d

dt

(
⟨α1 roth

1, rot (utH⃗
1)⟩+ ⟨α2 roth

2, rot (utH⃗
2)⟩
)
+

⟨α1 roth
1
t , rot (utH⃗

1)⟩+ ⟨α2 roth
2
t , rot (utH⃗

2)⟩.

Hence

d

dt

(
⟨d∆u,∆ut⟩+

2∑
k=1

⟨αk roth
k, rot (utH⃗

k)⟩

)

≤ −ρ0∥utt∥2 + d∥∆ut∥2 +
2∑

k=1

(
ε∥ rot (utH⃗k∥2 + c

ε
∥hkt ∥2

)
. (4.20)

Let us consider the functional

J1 := J(t)− c

2
|D2|2⟨ut,∆u⟩+ |D2|⟨d∆u,∆ut⟩+ |D2|

2∑
k=1

⟨αk roth
k, rot (utH⃗

k)⟩.

From (4.19) and (4.20) we get

d

dt
J1(t) ≤ − c

4
|D2|2

(
∥ut∥2 + ∥∇ut∥2 +

d

2ρ0
∥∇∆u∥2

)
− ρ0

2
|D2|∥utt∥2 +

+
3d

2
|D2|∥∆ut∥2 +

c

ε

2∑
k=1

∥hk∥2H1 + c

2∑
k=1

∥hkt ∥2, (4.21)

for ε < d/2 small enough. To �nally obtain the yet missing term of type �−∥∆ut∥2�, we calculate
∆ut in terms of hjt and rot rothj , j = 1, 2, as follows. The equations (4.2), (4.3) yield, for j = 1, 2,

rot rot (utH⃗
j) = −ρj

βj
hjt −

1

βj
rot rothj =: bj , (4.22)

in particular

bj =

(
∂2∂1utH

j
2 − ∂2

2utH
j
1

−∂2
1utH

j
2 + ∂1∂2utH

j
1

)
. (4.23)

With the matrix H2, de�ned in (3.3) and satisfying detH2 = D2
2, (4.22) is equivalent to the

linear system

H2


∂2
1ut

∂2∂1ut

∂1∂2ut

∂2
2ut

 =


b11
b12
b21
b22

 . (4.24)
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By Cramer's rule we compute

∂2
1ut =

1

D2

(
H1

1b
2
2 −H2

1b
1
2

)
, ∂2

2ut =
1

D2

(
H2

2b
1
1 −H1

2b
2
1

)
,

thus

D2∆ut = H1
1f

2
2 −H2

1f
1
2 +H2

2f
1
1 −H1

2f
2
1 =: g. (4.25)

Typical terms in g have the form

(a) a1∂th
j
k and (b) a2∂l∂mhjk, (4.26)

where j, k, l,m = 1, 2, and the constants a1, a2 can be bounded independent of H⃗j . Without loss

of generality we may assume D2 > 0 (otherwise multiply (4.25) by −1), then we obtain from

multiplying (4.25) by −∆ut

−|D2|∥∆ut∥2 = −⟨g,∆ut⟩. (4.27)

The term of type (a) in g is estimated by

|a1⟨∂thjk,∆ut⟩| ≤ ε8∥∆ut∥2 + c∥∂thjk∥
2. (4.28)

For type (b) we get

a2⟨∂l∂mhjk,∆ut⟩ = a2⟨∂mhjk, ∂l∆ut⟩

=
d

dt

(
a2⟨∂mhjk, ∂l∆u⟩

)
+ a2⟨∂m∂th

j
k, ∂l∆u⟩. (4.29)

Combining (4.27), (4.28), (4.29) we obtain

−|D2|∥∆ut∥2 = −
∑

a1⟨∂thjk,∆ut⟩ −
d

dt

∑(
a2⟨∂mhjk, ∂l∆u⟩

)
︸ ︷︷ ︸

:=J

+
∑

a2⟨∂m∂th
j
k, ∂l∆u⟩.

For the sum J = J(t) of all - say: P - terms of type −a2⟨∂mhjk, ∂l∆u⟩ we have

d

dt
J ≤ −|D2|

2
∥∆ut∥2 + ε∥∇∆u∥2 + cϵ

(
∥h1t ∥2H1 + ∥h2t ∥2H1

)
. (4.30)

Using the di�erential equations, we obtain

|J | ≤ c
(
∥h1∥H1 + ∥h2∥H1

)
∥∇∆u∥

≤ c
(
∥h1∥H1 + ∥h2∥H1

) (
∥∆u∥+ ∥∆2u∥

)
≤ cEnd (4.31)

Now we can de�ne the Lyapunov functional

L2 = L2(t) := MEnd + J1 + 4dJ, (4.32)

where M > 0 will be chosen large enough below. Combining the estimates (4.8), (4.9), (4.18),

(4.20), we get
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d

dt
L2(t) ≤ − c

4
|D2|2

(
∥ut∥2 + ∥∇ut∥2 +

d

2ρ0
∥∇∆u∥2

)
− ρ0

2
|D2|∥utt∥2 +

−d

2
|D2|∥∆ut∥2 − (M − c

ε
)

2∑
k=1

∥hk∥2H1 + (M − c)
2∑

k=1

∥hkt ∥2. (4.33)

With these choices and using the Poincaré estimate ∥∆u∥ ≤ c ∥∇∆u∥, we conclude

d

dt
L2 ≤ −min

{
M

2
,
c|D2|2

8
,
cρ0|D2|2

4
,
1

2
,
|D2|ρ0

2

}
End

≡ −rEnd. (4.34)

Here

r = O
(
|D2|2

)
as D2 → 0. (4.35)

Moreover, there exists M2 > 0 such that Q := L2 −MEnd satis�es

|Q| ≤ M2End.

Choosing M ≥ 2M2 we get

M2End ≤ L2 ≤ 3M2End. (4.36)

De�ning

κ2 :=
r

3M2

(
= O

(
|D2|2

))
we obtain from (4.34), (4.36)

d

dt
L2 ≤ −κ2L2,

thus

L2(t) ≤ L2(0)e
−κ2 t,

and, again by (4.36),

End(t) ≤ 3M2End(0)e
−κ2 t,

which proves Theorem 4.2. □

We remark that one also obtains the exponential decay of the �rst-order energy term E1(t) from

Theorem 4.2 by an abstract semigroup argument.

Corollary 4.3. There exists K̃2 > 0 such that for the solution to (4.1) �(4.6) and all t ≥ 0

E1(t) ≤ K̃2E1(0)e
−κ2 t

holds.

Proof: We have

E1 = 2∥V ∥2H for V = (u, ut, h
1, h2).
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Let V 0 ∈ D(A) and Vt = AV , V (0) = V 0. Then W 0 := A−1V 0 ∈ D(A2). Let W satisfy

Wt = AW , W (0) = W 0. Then

∥V (t)∥2H = ∥AW (t)∥2H = ∥Wt(t)∥2H ≤ c
(
∥W 0∥2H + ∥AW 0∥2H

)
e−κ2 t

by Theorem 4.2. Thus,

∥V (t)∥2H ≤ c∥V 0∥2He−κ2 t.

□

5 The exponential decay rate in 3-dimensions and the magnetic

vectors H⃗1, H⃗2, H⃗3

In three space dimensions we have system (1.9)-(1.15) from the introduction,

ρ0utt + d∆2u− α1 rot roth
1 · H⃗1 − α2 rot roth

2 · H⃗2α3 rot roth
3 · H⃗3 = 0, (5.1)

ρ1h
1
t + rot roth1 + β1 rot rot (utH⃗

1) = 0, (5.2)

ρ2h
2
t + rot roth2 + β2 rot rot (utH⃗

2) = 0, (5.3)

ρ3h
3
t + rot roth3 + β3 rot rot (utH⃗

3) = 0, (5.4)

(j = 1, 2, 3 :) div hj = 0, (5.5)

with boundary conditions

u = ∆u = 0, ν × hj = 0, j = 1, 2, 3, (5.6)

and initial conditions

u(·, 0) = u0, ut(·, 0) = u1, hj(·, 0) = hj0, j = 1, 2, 3. (5.7)

In analogy to the two-dimensional case treated in section 4 de�ne the �rst- and second-order

energy terms for a su�ciently smooth solution by

E1(t) :=
d

ρ0
∥∆u(t, ·)∥2 + ∥ut(t, ·)∥2 +

3∑
k=1

αkρk
βkρ0

∥hk(t, ·)∥2

and, with

E1(t) ≡ E1(u, h1, h2; t),

E2(t) := E1(ut, h1t , h2t ; t) =
d

ρ0
∥∆ut(t, ·)∥2 + ∥utt(t, ·)∥2 +

3∑
k=1

αkρk
βkρ0

∥hkt (t, ·)∥2.

For the sum

End(t) := E1(t) + E2(t) (5.8)

the exponential decay will be proved if the unit vectors H⃗1, H⃗2 and H⃗3 are not linearly dependent,

i.e. if we have three essentially di�erent directions of these magnetic �eld vectors. Let D3 =

det
(
H⃗1 H⃗2 H⃗3

)
again.
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Theorem 5.1. There exist K3 > 0 and κ3 > 0 such that for the solution to (5.1)-(5.7) and all

t ≥ 0

End(t) ≤ K3End(0)e−κ3 t

holds. κ3 = κ3(D3) = O
(
|D3|2

)
as D3 → 0.

The decay rate κ3 vanishes if H⃗1, H⃗2 and H⃗3 become linearly dependent parallel, and it is

strongest if they are orthogonal to each other. Remember that |D3| measures the volume of the

parallelepiped spanned by these vectors.

Proof of Theorem 5.1: The proof follows the lines of the proof of Theorem 4.2, we hence only

point out the essential modi�cations. Using essentially the same multipliers, the �rst modi�cation

arises in computing ∇ut from known fk := rot (utH⃗k), k = 1, 2, 3. We get the formula being

analogous to (4.16) with the ansatz for a pointwise representation

∇ut(t, x) =
3∑

k=1

γk(t, x)H⃗
k

and then computing the coe�cients γk as

γ1 =
⟨f2, H⃗3⟩R⊯

D3
, γ2 =

⟨f3, H⃗1⟩R⊯

D3
, γ3 =

⟨f1, H⃗2⟩R⊯

D3
.

Thus the analogue to (4.17) now reads

c
(
∥ut∥2 + ∥∇ut∥2

)
≤ 1

|D3|2
(
∥ rot (utH⃗1)∥2 + ∥ rot (utH⃗2)∥2 + ∥ rot (utH⃗3)∥2

)
. (5.9)

The second modi�cationa comes up in calculating ∆ut in terms of hjt and rot rothj , j = 1, 2, 3,

starting in two dimensions in (4.22).Now we have

f j := rot rot (utH⃗
j), (5.10)

the linear system

H3



∂2
1ut

∂1∂2ut

∂1∂3ut
...

∂3∂2ut

∂2
3ut


=



f1
1

f1
2

f1
3
...

f3
2

f3
3


, (5.11)

with the matrix H3 from (3.4) satisfying

detH3 = −2(D3)
3.

Exemplarily we compute ∂2
1ut by Cramer's rule as

∂2
1ut =

1

detH3
det(H),
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where

H :=



f1
1 −H1

2 −H1
3 0 H1

1 0 0 0 H1
1

f1
2 0 0 −H1

1 0 −H1
3 0 0 H1

2

f1
3 0 0 0 H1

3 0 −H1
1 −H1

2 0

f2
1 −H2

1 −H2
3 0 H2

1 0 0 0 H2
1

f2
2 0 0 −H2

1 0 −H2
3 0 0 H2

2

f2
3 0 0 0 H2

3 0 −H2
1 −H2

2 0

f3
1 −H3

2 −H3
3 0 H3

1 0 0 0 H3
1

f3
2 0 0 −H3

1 0 −H3
3 0 0 H3

2

f3
3 0 0 0 H3

3 0 −H3
1 −H3

2 0


.

Since

det(H) = D2
3

[
(H2

2H
3
3 −H2

3H
3
2 )f

1
1 + (H2

1H
3
3 −H2

3H
3
1 )f

1
2 + (H2

2H
3
1 −H3

2H
2
1 )f

1
3

+(H1
3H

3
2 −H1

2H
3
3 )f

2
1 + (H1

1H
3
3 −H1

3H
3
1 )f

2
2 + (H1

1H
3
2 −H1

2H
3
1 )f

2
3

+(H1
2H

2
3 −H1

3H
2
2 )f

3
1 + (H1

1H
2
3 −H1

3H
2
1 )f

3
2 + (H1

2H
2
1 −H1

1H
2
2 )f

3
3

]
(again checked by Maple©) we conclude

∂2
1ut ==

 3∑
k,m=1

a1kmfk
m

 . (5.12)

with constants a1km ∈ {H i
jH

p
l | i, j, p, l = 1, 2, 3}; similarly for ∂2

2ut and ∂2
3ut.

This way we obtain the relation (cp. (4.25))

D3∆ut =
3∑

k,m=1

 3∑
j=1

ajkm

 fk
m. (5.13)

Now we may carry over the remaining arguments from section 4 and thus �nish the proof of

Theorem 5.1. □

We have the corresponding corollary for the �rst-order energy term as in section 4.

Corollary 5.2. There exists K̃3 > 0 such that for the solution to (5.1) �(5.7) and all t ≥ 0

E1(t) ≤ K̃3E1(0)e−κ3 t

holds.

6 Strong stability for less than n magnetic �elds

The results on exponential stability given in Sections 4 and 5, with having an estimated decay

rate going to zero as the vectors H1, H2 [H3]) tend to become linearly dependent, might be seen

as an indication � of course not a proof � that there is no exponential stability given in the case

where there are less than n linearly independent magnetic �elds, i.e. for n = 2 only one magnetic
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�eld, and for n = 3 either only one or at most two linearly independent magnetic �elds. The

property of strong stability is proven to be true now exemplarily for the rectangle Ω2 = (0, π)2

in two dimensions, resp. for the cube Ω3 = (0, π)3 in three dimensions.

Remark 6.1. In the previous sections we had assumed, for simplicity, that Ω is smoothly

bounded. Although the classical elliptic regularity results for smoothly bounded domains do not

carry over to general domains with corners, cf. [2, 6, 7], in particular [7, Example 9.29], the

necessary results here remain valid for a square resp. a cube, where we can get the usual elliptic

H2- resp. H4-regularity results for −∆ resp. ∆2 with the boundary conditions used.

We consider the following systems in this section. For n = 2:

ρ0utt + d∆2u− α1( rot roth
1) · H⃗1 = 0 in Ω2 × [0,∞), (6.1)

ρ1h
1
t + rot roth1 + β1 rot rot (utH⃗

1) = 0 in Ω2 × [0,∞), (6.2)

div h1 = 0 in Ω2 × [0,∞), (6.3)

with boundary conditions

u = ∆u = 0, ν × h1 = 0, (6.4)

and initial conditions

u(·, 0) = u0, ut(·, 0) = u1, h1(·, 0) = h10. (6.5)

For n = 3 with one magnetic �eld:

ρ0utt + d∆2u− α1 rot roth
1 · H⃗1 = 0 in Ω3 × [0,∞), (6.6)

ρ1h
1
t + rot roth1 + β1 rot rot (utH⃗

1) = 0 in Ω3 × [0,∞), (6.7)

div h1 = 0 in Ω3 × [0,∞), (6.8)

with boundary conditions

u = ∆u = 0, ν × h1 = 0, (6.9)

and initial conditions

u(·, 0) = u0, ut(·, 0) = u1, h1(·, 0) = h10. (6.10)

For n = 3 with two magnetic �elds:

ρ0utt + d∆2u− α1 rot roth
1 · H⃗1 − α2 rot roth

2 · H⃗2 = 0 in Ω3 × [0,∞), (6.11)

ρ1h
1
t + rot roth1 + β1 rot rot (utH⃗

1) = 0 in Ω3 × [0,∞), (6.12)

ρ2h
2
t + rot roth2 + β2 rot rot (utH⃗

2) = 0 in Ω3 × [0,∞), (6.13)

(j = 1, 2 :) div hj = 0 in Ω3 × [0,∞), (6.14)

with boundary conditions

u = ∆u = 0, ν × hj = 0, j = 1, 2, (6.15)
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and initial conditions

u(·, 0) = u0, ut(·, 0) = u1, hj(·, 0) = hj0, j = 1, 2. (6.16)

Then we have the strong stability result for the square resp. the cube in the following

Theorem 6.2. In both dimensions, n = 2, 3, the semigroups
(
e tA)

t≥0
associated to the problems

(6.1)-(6.5) resp. (6.6)-(6.10) and (6.11)-(6.16) are strongly stable, i.e. we have for any initial data

V0 ∈ H
lim
t→∞

∥e tAV 0∥H = 0.

Proof: Since A−1 is compact, cf. Remark 2.1, we have just to exclude purely imaginary

eigenvalues. In the following we assume w.l.o.g. that all constants in the di�erential equations

above are equal to one, i.e.

ρ0 = ρ1 = ρ2 = ρ3 = d = α1 = α2 = α3 = β1 = β2 = β3 = 1.

First we consider n = 2. i.e. system (6.1)-(6.5). Assume that 0 ̸= V = (u, v, h1) ∈ D(A) is an

eigenvector to the purely imaginary eigenvalue iλ with 0 ̸= λ ∈ R, then

iλV −AV = 0, (6.17)

or, equivalently,

iλu− v = 0, (6.18)

iλv +∆2u− ( rot roth1) · H⃗1 = 0, (6.19)

iλh1 + rot rot (vH⃗1) + rot roth1 = 0. (6.20)

Since Re (AV, V )H = 0, we conclude from the dissipation equality (2.5) that h1 = 0, thus,

using (6.18), (6.19), implying

∆2u = λ2u, (6.21)

rot rot (uH⃗1) = 0. (6.22)

Hence, u is an eigenvector for the biharmonic operator ∆2 with the boundary conditions u =

∆u = 0 in Ω2, having to satisfy equation (6.22). Thus,

u = u(x1, x2) = sin(γ1x1) sin(γ2x2), (6.23)

with some (γ1, γ2) ∈ N2 with λ2 = (γ21 + γ22)
2. The side condition (6.22) yields(

0

0

)
=

(
∂2∂1uH

1
2 − ∂2

2uH
1
1

−∂2
1uH

1
2 + ∂2∂1uH

1
1

)

=

(
γ2γ1 cos(γ1x1) cos(γ2x2)H

1
2 + γ22 sin(γ1x1) sin(γ2x2)H

1
1

γ21 sin(γ1x1) sin(γ2x2)H
1
2 + γ2γ1 cos(γ1x1) cos(γ2x2)H

1
1

)
. (6.24)
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But it is easy to see that the latter cannot hold simultaneously for all (x1, x2) ∈ Ω2. Hence, the

eigenvector V cannot exist, and we have proved the strong stability for n = 2.

Regarding the case n = 3 with one magnetic �eld, i.e. system (6.6)-(6.10), we argue similarly.

If V is again an eigenvector to a purely imaginary eigenvalue iλ, we obtain, as in two dimensions

above, that u has to satisfy

∆2u = λ2u, (6.25)

rot rot (uH⃗1) = 0. (6.26)

Hence, u is again an eigenvector for the biharmonic operator ∆2 with the boundary conditions

u = ∆u = 0 in Ω3, having to satisfy equation (6.26). Thus,

u = u(x1, x2, x3) = sin(γ1x1) sin(γ2x2) sin(γ3x3), (6.27)

with some (γ1, γ2, γ3) ∈ N3 with λ2 = (γ21 + γ22 + γ23)
2. The side condition (6.26) yields 0

0

0

 =

 ∂1∂2uH
1
2 − ∂2

2uH
1
1∂

2
3uH

1
1 + ∂1∂3uH

1
3

∂2∂3uH
1
3 − ∂2

3uH
1
2 − ∂2

1uH
1
2 + ∂2∂1uH

1
1

∂3∂1uH
1
1 − ∂2

1uH
1
3 − ∂2

2uH
1
3 + ∂3∂2uH

1
2 .



=

 γ1γ2 cos(γ1x1) cos(γ2x2) sin(γ3x3)H
1
2 + (γ22 + γ23) sin(γ1x1) sin(γ2x2) sin(γ3x3)H

1
1

γ2γ3 sin(γ1x1) cos(γ2x2) cos(γ3x3)H
1
2 + (γ21 + γ23) sin(γ1x1) sin(γ2x2) sin(γ3x3)H

1
2

γ1γ3 cos(γ1x1) sin(γ2x2) cos(γ3x3)H
1
1 + (γ21 + γ22) sin(γ1x1) sin(γ2x2) sin(γ3x3)H

1
3



+

 γ1γ3 cos(γ1x1) sin(γ2x2) cos(γ3x3)H
1
3

γ1γ2 cos(γ1x1) cos(γ2x2) sin(γ3x3)H
1
1

γ2γ3 sin(γ1x1) cos(γ2x2) cos(γ3x3)H
1
2

 . (6.28)

But the latter cannot hold simultaneously for all (x1, x2, x3) ∈ Ω3, take for visualization for

example H⃗1 = (1, 0, 0). Hence, the eigenvector V cannot exist, and we have proved the strong

stability for n = 3 with one magnetic �eld.

Finally, for n = 3 with two magnetic �elds, i.e. system (6.11)-(6.16), the di�erence to the

case of one magnetic �eld is that u as in (6.27) has to satisfy (6.26) and additionally

rot rot (uH⃗2) = 0. (6.29)

The more it is impossible that an eigenvector V , as assumed, exist. Thus the strong stability in

this case is also proved. □

The question of non-exponentially stability remains open. The conjecture is that for less than n

magnetic �elds the system is not exponentially stable.
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