Universität Konstanz Fachbereich Mathematik und Statistik C. Scheiderer, J. Vill WS 2019/20

Übungen zur Vorlesung Konvexität

Blatt 5

Abgabe: Freitag 10. Januar 2020 um 13:00 Uhr

Sei V stets ein \mathbb{R} -Vektorraum mit $\dim(V) < \infty$.

Aufgabe 17

Sei $C \subseteq V$ ein abgeschlossener konvexer Kegel. Für jede Seite F von C sei $F' := \{\alpha \in C^* : \alpha|_F = 0\}$. Zeige:

- (a) F' ist eine exponierte Seite von C^* , und es gilt $\dim(F) + \dim(F') \leq \dim(V)$.
- (b) $F \mapsto F'$ ist eine Bijektion zwischen den Mengen der nichtleeren exponierten Seiten von C und von C^* .

Aufgabe 18

Verwende die Bezeichnungen aus Aufgabe 17.

- (a) Ist der Kegel C ein Polyeder, so gilt $\dim(F) + \dim(F') = \dim(V)$ für jede Seite F von C.
- (b) Gib ein Beispiel eines abgeschlossenen konvexen Kegels $C \subseteq V$ und einer exponierten Seite F von C an mit $\dim(F) + \dim(F') < \dim(V)$.

Aufgabe 19

Für $A \in \operatorname{Sym}_n(\mathbb{R})$ sei $K_A \subseteq \operatorname{Sym}_n(\mathbb{R})$ die konvexe Hülle aller Matrizen SAS^t mit $S \in \operatorname{O}(n)$. Berechne die Dimension von K_A in Abhängigkeit von A.

Aufgabe 20

Sei $A \in \operatorname{Sym}_n(\mathbb{R})$, sei K_A wie in Aufgabe 19, und sei $\lambda = \lambda_A$ der Vektor der Eigenwerte von A. Für jede Seite P von Π_{λ} sei $F_P := K_A \cap D^{-1}(P)$.

- (a) F_P ist eine Seite von K_A .
- (b) Für jede Seite F von K_A gibt es $S \in O(n)$ und eine Seite P von Π_{λ} mit $F = \{SXS^t : X \in F_P\}.$

Hinweis: In (b) kann verwendet werden, daß jede Seite von K_A exponiert ist (das zeigen wir später).

Frohe Weihnachten und ein gutes Neues Jahr!