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Abstract: Studying convex cones inside the cone of positive semidefinite (PSD) polynomials is
an important field of research in real algebraic geometry and polynomial optimization. In this
work, we combine two such well established cones, which are sums of squares (SOS) and sums
of nonnegative circuit polynomials (SONC) and consider PSD polynomials, that decompose
into an SOS and a SONC part. We call the resulting set the SOS+SONC cone. For this newly
established cone, we prove two separation results. The first one is an analogue to Hilbert’s 1888
Theorem for the SOS+SONC cone. The second one shows that whenever the SOS and SONC
cones are proper subsets of the PSD cone, they are also proper subsets of the SOS+SONC cone.
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1. INTRODUCTION

Minimizing a given real, multivariate polynomial f ∈ R[x]
is the central challenge of polynomial optimization. The
importance of this topic can be seen in the variety of
applications in different fields such as optimal control,
mathematical finance and real-time decision making. It is
well known that polynomial optimization can equivalently
be viewed as the problem of deciding nonnegativity of
real polynomials. This equivalence is of central meaning
in real algebraic geometry since convex geometric tools
can be used to obtain a deeper understanding of the set of
nonnegative polynomials.

The relevance of a theoretical study of both problems is
also stressed by the fact that both polynomial optimization
and deciding nonnegativity of real polynomials are in gen-
eral NP-hard even for low dimensional cases. Hence, one
is often interested in solving easier problems instead, often
involving trade offs between feasibility and preciseness of
solutions. In this work we follow the real algebraic geo-
metric approach of taking suitable inner approximations
of the set of nonnegative polynomials.

A first inner approximation of the cone of nonnegative
polynomials are sums of squares (SOS), which have a
long history in Mathematics and go back to Hilbert’s
seminal work in Hilbert (1888). The SOS approach has
proven to be a powerful tool for solving a vast number
of optimization problems, see see e.g. Lasserre (2009) for
more details. However, it has its limitations especially in
high degree and high number of variables cases.

A second approximation which has gained a lot of interest
in recent years are sums of nonnegative circuit (SONC)
polynomials, which were first introduced by Iliman and
de Wolff (2016). The sparse structure of this class of
polynomials allows to solve large problems, where the SOS

approach has its difficulties. However, since the SONC
approach is relatively new, it is only fully developed for
special classes of polynomials, having e.g. simplex Newton
polytopes. Indeed, there are different types of conic pro-
gramming using SONC for polynomial optimization, see
e.g. Wang and Magron (2020) and Dressler et al. (2020).

Dressler (2018) pointed out that if it would be possible
to combine the two approaches and use the best of both
worlds, one would get a new approximation which is at
least as good as the single approaches themselves.

In terms of polynomial optimization, let f ∈ R[x] and
consider the global polynomial optimization problem f∗ =
infx∈Rn f(x) = sup{λ ∈ R : f − λ ≥ 0 on Rn}. Let SOS
and SONC denote the sets of SOS and SONC polynomials,
respectively. Then, lower bounds on f∗ can be achieved
via fSOS := sup{λ ∈ R : f − λ ∈ SOS} and fSONC :=
sup{λ ∈ R : f − λ ∈ SONC}. Taking the Minkowski sum
SOS + SONC leads to a third lower bound fSOS+SONC :=
fSOS+SONC := sup{λ ∈ R : f − λ ∈ SOS + SONC} which
satisfies fSOS, fSONC ≤ fSOS+SONC ≤ f∗.
In this work, we fully characterize the numbers of vari-
ables and degrees of polynomials for which the above’s
inequalities are strict. Therefore, we formally introduce
the cone of sums of squares and nonnegative polynomials
(SOS+SONC) and present explicit examples of polynomi-
als separating this cone from the SOS and SONC cones as
well as the cone of positive semidefinite polynomials.

2. PRELIMINARIES

2.1 Notations

Let N := {1, 2, 3, . . .} and N0 := N ∪ {0} be the sets of
positive and nonnegative integers, respectively and [m] :=
{1, . . . ,m} (m ∈ N). For n ∈ N let R[x] := R[x1, . . . , xn]



be the polynomial ring over R in n variables. The integer
n ∈ N will be fixed throughout this work.

A polynomial f ∈ R[x] with all monomials having the
same degree k ∈ N is called homogeneous or a form. For
k ∈ N we denote by Hn,k the finite dimensional vector
space of n-variate, homogeneous polynomials of degree k.
For f ∈ R[x], we write supp(f) for the support and New(f)
for the Newton polytope of f , i.e. New(f) = conv(supp(f)),
where conv(S) is the convex hull of a set S. For an
arbitrary polytope ∆ ⊆ Rn, we denote its set of vertices
by V (∆). If ∆ = New(f) is the Newton polytope of a
polynomial f , we also write V (f) := V (New(f)). For
α ∈ Nn0 and f ∈ R[x], we denote by fα the coefficient
of f corresponding to xα, i.e. f =

∑
α∈Nn

0
fαxα and fα = 0

if α 6∈ supp(f).

2.2 Young’s Inequality

The following Theorem is essential for proofs in Section 3.

Young’s Inequality Let 1 < p, q <∞ be s.t. 1/p+1/q = 1.

Further, let a, b ∈ R be arbitrary. Then ab ≤ |a|p
p + |b|q

q .

Further, for a, b ≥ 0 equality holds if and only if ap = bq.

2.3 Positive Semidefinite (PSD) Polynomials

A polynomial f ∈ R[x] is positive semidefinite (PSD) if
f(x) ≥ 0 for all x ∈ Rn. Clearly, a PSD polynomial must
have even degree. Therefore, an even integer 2d ∈ 2N will
be fixed throughout this work.

We denote by

Pn,2d := {f ∈ Hn,2d : f ≥ 0 on Rn}
the set of PSD forms of degree 2d. It is well known that
Pn,2d is a closed, convex cone in the vector space Hn,2d.

2.4 Sum of Squares (SOS) Polynomials

A polynomial f ∈ R[x] is a sum of squares (SOS) if it
admits a decomposition of the form f =

∑s
i=1 f

2
i such

that s ∈ N, fi ∈ R[x] (i ∈ [s]). The set of SOS forms of
degree 2d is denoted by

Σn,2d :=

{
f =

s∑
i=1

f2i : fi ∈ R[x]≤d, s ∈ N

}
.

Similar as the PSD cone, Σn,2d forms a closed, convex cone
inside Pn,2d.

The following theorem characterizes precisely the cases of
(n, 2d) for which the PSD and SOS cones coincide. It goes
back to Hilbert’s work Hilbert (1888).

Hilbert 1888 It holds Σn,2d = Pn,2d if and only if n = 2
or 2d = 2 or (n, 2d) = (3, 4).

2.5 Sums of Nonnegative Circuit (SONC) Polynomials

A polynomial f =
∑m
i=1 cix

α(i) + bxβ ∈ R[x] where
m ∈ N, α(1), . . . , α(m), β ∈ Nn0 and c1, . . . , cm, b ∈ R is a
circuit polynomial if it satisfies the following conditions:

(C1) The lattice points α(1), . . . , α(m) are even, i.e.
α(1), . . . , α(m) ∈ (2N0)n and affinely independent.

(C2) The coefficients ci corresponding to the α(i) are
positive, i.e. ci > 0 for i = 1, . . . ,m.

(C3) The exponent β lies in the interior of the Newton
polytope of f .

The monomials cix
α(i) (i = 1, . . . ,m) are called vertex

monomials. In addition, if b 6= 0 the monomial bxβ is
called interior monomial. The set of circuit polynomials
supported on A ⊆ Nn0 is denoted by CircA ⊆ R[x].

A polynomial f ∈ R[x] is a sum of nonnegative circuit
polynomials (SONC) if it admits a decomposition of the
form f =

∑s
i=1 fi where s ∈ N and every fi is a

nonnegative circuit polynomial. We denote by

Cn,2d :=

{
f =

s∑
i=1

fi : fi ∈ CircAi
∩Pn,2d, Ai ⊆ Nn0

}
the set of SONC polynomials of degree at most 2d. Again,
Cn,2d is a closed, convex cone inside Pn,2d.

The following Theorem shows that Cn,2d is an inner
approximation of Pn,2d, which is independent of Σn,2d. It
is a combination of results in (Iliman and de Wolff, 2016,
Prop. 7.2) and (Dressler, 2018, Thm. 3.1.2)

Theorem The SONC cone Cn,2d satisfies:

(1.) Cn,2d ⊆ Σn,2d if and only if n = 2 or 2d = 2 or
(n, 2d) = (3, 4).

(2.) C2,2 = Σ2,2 and Σn,2 6⊆ Cn,2 for all n ≥ 3.
(3.) Σn,2d 6⊆ Cn,2d for all (n, 2d) with 2d ≥ 4.

2.6 The combined cone SOS+SONC of sums of squares
and nonnegative circuit polynomials

A polynomial f ∈ R[x] is said to be a sum of squares
and nonnegative circuit polynomials (SOS+SONC) if it
has a decomposition of the form f = g + h for some
f ∈ Σn,2d, g ∈ Cn,2d. Further, we denote by

(Σ + C)n,2d := Σn,2d + Cn,2d

the set of SOS+SONC forms in n variables of degree 2d.

3. SEPARATING THE PSD CONE FROM THE
SOS+SONC CONE - A SOS+SONC ANALOGUE TO

HILBERT’S 1888 THEOREM

As in Hilbert 1888 for the SOS case and the theorem
of Section 2.5 for the SONC case, it is of interest to
find separation results, which classify whenever a given
inner approximation of the PSD cone is proper or not.
Therefore, we show in Theorem 1 an analogue to Hilbert
1888 for the SOS+SONC case. The following statement
was already proven in a non constructive way in (Averkov,
2019, Corollary 2.17). As a contribution we present an
alternative proof by constructing appropriate polynomials
in the two basic cases ((n, 2d) ∈ {(3, 6), (4, 4)}) and scaling
them to higher dimensional and number of variables cases.

Theorem 1. It holds (Σ + C)n,2d = Pn,2d if and only if
n = 2 or 2d = 2 or (n, 2d) = (3, 4).

As a first step, we show that it suffices to consider the
two elementary cases of ternary sextics and quarternary
quartics, i.e. (n, 2d) ∈ {(3, 6), (4, 4)}.



Lemma 2. If (Σ+C)3,6 ( P3,6 and (Σ+C)4,4 ( P4,4 then
(Σn,k+C)n,k ( Pn,k for all n ≥ 3, k ≥ 4 and (n, k) 6= (3, 4)
(k even).

Proof. We show equivalently: P3,6\(Σ + C)3,6 6= ∅ and
P4,4\(Σ + C)4,4 6= ∅ imply Pn,k\(Σ + C)n,k 6= ∅ for all
n ≥ 3, k ≥ 4 and (n, k) 6= (3, 4) where k is even.

Claim 1: f ∈ Pn,k\(Σ + C)n,k implies for all m ∈ N,
f ∈ Pn+m,k\(Σ + C)n+m,k.

The case m = 1 can be seen easily, since SOS and SONC
polynomials in Hn+1,k stay SOS and SONC, respectively,
after plugging in xn+1 = 0. The general case follows
inductively.

Claim 2: f ∈ Pn,k\(Σ + C)n,k implies for all ` ∈ N
x2`
1 f ∈ Pn,k+2`\(Σ + C)n,k+2`.

Consider ` = 1 and let f ∈ Pn,k\(Σ + C)n,k be arbitrary.
Assume that x2

1f ∈ (Σ + C)n,k+2, i.e. there is a decom-
position x2

1f = fSOS + fSONC with fSOS and fSONC being
SOS and SONC polynomials in Hn,k+2, respectively. Since
the left hand side vanishes at x1 = 0, the right hand side
must vanish at x1 = 0 as well. Since fSOS, fSONC are PSD,
we obtain fSOS(0, x2, . . . , xn) = 0 = fSONC(0, x2, . . . , xn).
Hence x1 | fSOS, fSONC, i.e. fSOS = x1 · f1, fSONC = x1 · f2
for some f1, f2 ∈ Hn,k+1.

Write fSOS =
∑s
i=1 g

2
i , fSONC =

∑t
j=1 hj , s, t ∈ N s.t. gi ∈

Hn,k/2+1 and the hj are nonnegative circuit polynomials.

Similary as above, PSDness of g2i and hj yields x1 | g2i , hj .
For the SOS part, we immediately obtain x1 | gi, i.e.
x2
1 | fSOS. Remains to show x2

1 | hj for all j. However,
this follows since all monomials of hj must be divisible by
x1, all vertex monomials of x1 are even lattice points and
the only interior monomial is a convex combination of the
vertex monomials. Hence we have x2

1 | fSOS, fSONC, which
yields that f = fSOS/x2

1 + fSONC/x2
1 would be a SOS+SONC

decomposition in Hn,k, a contradiction. This shows Claim
2 for ` = 1. The general case follows inductively.

Combining Claim 1 and Claim 2 shows the Lemma.

Next, we cover the two elementary cases where (n, 2d) ∈
{(3, 6), (4, 4)}. Therefore, we show that the two Robinson
forms from Robinson (1969) are indeed PSD but not
SOS+SONC.

Lemma 3. It holds

R1(x, y, z) =x6 + y6 + z6 −
(
x4y2 + x4z2 + y4x2 + y4z2

+z4x2 + z4y2
)

+ 3x2y2z2 ∈ P3,6\(Σ + C)3,6

and hence P3,6 6= (Σ + C)3,6.

Proof. Step 1: Assume that R1 ∈ (Σ + C)3,6 was
SOS+SONC. Choose an SOS polynomial fSOS ∈ Σ3,6 such
that R1−fSOS ∈ C3,6 is a SONC polynomial. Without loss
of generality we can assume that R1 − fSOS decomposes
into nonnegative circuit polynomials, which are not SOS.
Since R1 = fSOS+(R1−fSOS) is a decomposition into PSD
polynomials, New(fSOS), New(R1 − fSOS) ⊆ New(R1)
must hold (cf. (Reznick, 1978, Theorem 1)).

Step 2: By Hilbert 1888, we know that every PSD bivariate
form is SOS, i.e. P2,2d = Σ2,2d for all d ∈ N. Now consider

e.g. the monomial m = x4y2. Assume that the SONC part
R1 − fSOS contains a nonnegative circuit polynomial h
having m as interior monomial, i.e. h(4,2,0)′ � 0. But then,
since m is in the interior of New(h), the circuit polynomial
h must clearly be bivariate, i.e. h ∈ C2,6 ⊆ P2,6 =
Σ2,6. This contradicts our assumption that no nonnegative
circuit polynomial in R1 − fSOS is also SOS. Hence,
m cannot be an interior monomial of any nonnegative
circuit polynomials in the decomposition of R1 − fSOS,
which shows that (R1 − fSOS)(4,2,0)′ ≥ 0 and equivalently
(fSOS)(4,2,0)′ ≤ −1. Analogous argumentation shows

(fSOS)(4,2,0)′ , (fSOS)(4,0,2)′ , (fSOS)(2,4,0)′ ,

(fSOS)(2,0,4)′ , (fSOS)(0,4,2)′ , (fSOS)(0,2,4)′

}
≤ −1 (1)

This yields in particular x6, y6, z6 ∈ New(fSOS) and hence
New(fSOS) = New(R1).

Step 3: Write fSOS =
∑s
i=1 g

2
i s.t. gi ∈ H3,3, s ∈ N. Since

New(gi) ⊆ 1
2 New(fSOS) = 1

2 New(R1) = conv(x3, y3, z3),
all possible exponents of the gi’s are given by

α(1) = (3, 0, 0)′, α(2) = (2, 1, 0)′, α(3) = (2, 0, 1)′),

α(4) = (1, 2, 0)′, α(5) = (1, 1, 1)′, α(6) = (1, 0, 2)′,

α(7) = (0, 3, 0)′, α(8) = (0, 2, 1)′, α(9) = (0, 1, 2)2,

α(10) = (0, 0, 3)′

and we can write gi =
∑10
j=1 gijx

α(j) (i = 1, . . . , s), for
some gij ∈ R.

Step 4: By (1) and the decomposition of fSOS =
∑s
i=1 g

2
i ,

we know −1 ≥ (fSOS)(4,2,0)′ =
∑s
i=1 g

2
i,2 +

∑s
i=1 2gi,1gi,4.

Hence, using Young’s inequality we obtain

−1 ≥ (fSOS)(4,2,0)′ =

s∑
i=1

g2i,2 +

s∑
i=1

2gi,1gi,4

≥
s∑
i=1

g2i,2 −
s∑
i=1

2 |gi,1| · |gi,4|

≥
s∑
i=1

g2i,2 −
s∑
i=1

g2i,1 −
s∑
i=1

g2i,4

≥ −1 +

s∑
i=1

g2i,2 −
s∑
i=1

g2i,4,

(2)

where we used that (fSOS)(6,0,0)′ =
∑s
i=1 g

2
i,1 ≤ 1 must

hold. Rearranging (2) yields
∑s
i=1 g

2
i,2 ≤

∑s
i=1 g

2
i,4.

Analogous argumentation shows that e.g.

−1 ≥ (fSOS)(2,4,0) =

s∑
i=1

g2i,4 +

s∑
i=1

2gi,7gi,2

≥ · · · ≥ −1 +

s∑
i=1

g2i,4 −
s∑
i=1

g2i,2

and therefore
∑s
i=1 g

2
i,2 ≥

∑s
i=1 g

2
i,4. We finally obtain the

equality
∑s
i=1 g

2
i,2 =

∑s
i=1 g

2
i,4. Hence, equality must hold

everywhere in (2), which shows:

(III) (fSOS)′(6,0,0) =
∑s
i=1 g

2
i,1 = −1.

(IV) By Young’s Inequality: gi,1 6= 0 if and only if gi,4 6= 0
and in this case |gi,1| = |gi,4| (i ∈ [s]).

(V) sign(gi,1) = − sign(gi,4) (i ∈ [s]).
(VI) (fSOS)(4,2,0)′ = −1.



Clearly, similar observations as in (III)-(V) can be made
for all pairs (gi,r, gi,s) s.t. (r, s) ∈ {(1, 4), (1, 6), (7, 2), (7, 9),
(10, 3), (10, 8)}. In addition, as in (VI), we obtain for the
other coefficients as in (1):

(fSOS)(4,2,0)′ = (fSOS)(4,0,2)′ = . . . = −1. (3)

Step 5: By (3), we have

(R1 − fSOS)(4,2,0)′ = (R1 − fSOS)(4,0,2)′ = . . . = 0.

Furthermore, (III) for all possible coefficients leads to

(R1 − fSOS)(6,0,0)′ = (R1 − fSOS)(0,6,0)′

=(R1 − fSOS)(0,0,6)′ = 0.

To sum up, we now have x6, y6, z6, x4y2, x4z2, x2y4,
x2z4, y4z2, y2z4 6∈ supp(R1 − fSOS). However, the form
R1 − fSOS is SONC and in particular PSD. Hence all
vertices in V (R1−fSOS) are even. Since New(R1−fSOS) ⊆
New(R1), the only possible lattice point left is x2y2z2.
Hence, New(R1 − fSOS) ⊆ conv(x2y2z2) = {x2y2z2} must
hold and R1−fSOS would be SOS, which is a contradiction.

For the quarternary quartics case, we can argue similarly.

Lemma 4. It holds P4,4 6= (Σ + C)4,4. More precisely, we
have

R2(x, y, z,w) = x2(x− w)2 + y2(y− w)2 + z2(z− w)2

+ 2xyz(x + y + z− 2w) ∈ P4,4\(Σ + C)4,4.

Proof. The proof follows an analogous argumentation as
in Lemma 3. By Hilbert 1888, we can without loss of
generality choose fSOS ∈ Σ4,4 s.t. R2 − fSOS ∈ C4,4

is SONC and does not contain any nonnegative circuit
polynomial in three variables in its decomposition. It can
be deduced that New(fSOS) = New(R2) must hold.

Further, using Young’s inequality for the coefficients of
x3w, y3w, z3w it can be seen that

x4, x2w2, y4, y2w2, z4, z2w2 6∈ supp(R2 − fSOS).

Hence, the only even exponents in supp(R2) left as possible
lattice points for R2−fSOS are x2y2, x2z2, y2z2. However,
this means that R2−fSOS is a PSD form in three variables
of degree four, which is SOS by Hilbert 1888. Hence, R2 is
SOS as well, which is a contradiction. For this reason, R2

cannot be SOS+SONC.

We are now able to prove Theorem 1.

Proof. [Theorem 1.] “⇐” is clear by Hilbert 1888.

“⇒”: The Robinson polynomials from Lemma 3 and
Lemma 4 are examples of polynomials in P3,6\(Σ + C)3,6
and P4,4\(Σ+C)4,4, respectively. Hence, the claim follows
directly from Lemma 2.

4. SEPARATING THE SOS+SONC CONE FROM
THE SOS AND SONC CONE

In this section, we present a theorem which shows that the
SOS+SONC cone is a proper cone extension of both the
SOS and the SONC cones for all (n, 2d) ≥ (3, 4), (n, 2d) 6=
(3, 4). This shows that for all nontrivial (n, 2d), the
SOS+SONC cone is a better inner approximation of the
PSD cone than the single SOS and SONC cones.

Theorem 5. For all (n, 2d) ≥ (3, 4), (n, 2d) 6= (3, 4) it holds

(Σ + C)n,2d 6⊆ (Σn,2d ∪ Cn,2d) .

Proof. Similarly as in Lemma 2 one can show that it
suffices to consider the cases (n, 2d) ∈ {(3, 6), (4, 4)}.
Hence, the claim follows by constructing explicit examples
for the two elementary cases. Indeed, we have e.g.

f1 =x4y2 + x2y4 + z6 − 3x2y2z2

+ 1/2 · (z3 + 2xyz + x2y)2 ∈ (Σ + C)3,6\(Σ ∪ C)3,6,

f2 =x2y2 + x2z2 + y2z2 + w4 − 4wxyz

+ (xy + xz + yz)2 + w4 ∈ (Σ + C)4,4\(Σ ∪ C)4,4.

5. CONCLUSION

Combining Theorem 1 and Theorem 5 we have shown that
for all non Hilbert cases (n, 2d) ≥ (3, 4), (n, 2d) 6= (3, 4),
it holds (Σn,2d ∪ Cn,2d) ( (Σ + C)n,2d ( Pn,2d.

We presented explicit examples R1, R2 and f1, f2 showing
the inequalities for the two basic cases and demonstrated
how two scale them to arbitrary cases. In terms of poly-
nomial optimization, this shows that for all mentioned
cases of n and 2d, there are PSD polynomial which can
be handled by the SOS+SONC cone but neither the SOS
nor the SONC cone themselves. On the other hand, there
are polynomials which are not classifiable as being PSD by
SOS+SONC. It remains to find an efficient way to actually
decide membership to the combined SOS+SONC cone.
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