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Central question: Given an arbitrary, multivariate, real

polynomial f ∈ R[x1, . . . , xn], is it (globally) nonnegative?
- This question is closely related to polynomial optimization.
- Answering the question is in general co-NP-hard.
- Hence, one is interested in finding sufficient conditions that imply
the nonnegativity of a polynomial.

Preliminaries
- Hn,2d the vector space of real homogeneous polynomials (forms)
in n ∈ N variables of degree 2d ∈ 2N.

- Pn,2d := {f ∈ Hn,2d | ∀x ∈ Rn : f (x) ≥ 0} the cone of positive
semidefinite polynomials (PSD).

- Σn,2d :=
{
f =

s∑
i=1

g2i | g1, . . . , gs ∈ Hn,d
}

the cone of sums of squares polynomials (SOS).

- Cn,2d :=
{
f =

s∑
i=1

gi | g1, . . . , gs ∈ Pn,2d circuit polynomials
}

the cone of sums of nonnegative circuit polynomials (SONC).

Fact. 1 (Hilbert 1888) [3]. It holds Σn,2d = Pn,2d if and only if n = 2
or 2d = 2 or (n, 2d) = (3, 4).

Refer to n ≥ 3, 2d ≥ 4, (n, 2d) ̸= (3, 4) as the non-Hilbert cases.

Fact. 2 [4, Prop. 7.2] and [2, Thm. 3.1]. It holds:
(1.) Cn,2d ⊆ Σn,2d if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
(2.) C2,2 = Σ2,2 and Σn,2 ̸⊆ Cn,2 for all n ≥ 3.
(3.)Σn,2d ̸⊆ Cn,2d for all (n, 2d) with 2d ≥ 4.

The Minkowski sum of the SOS and SONC cones
The SOS+SONC cone

(Σ + C)n,2d := Σn,2d + Cn,2d = conv(Σn,2d , Cn,2d)

contains all homogeneous polynomials f = f1 + f2 ∈ Hn,2d that
decompose into a SOS part f1 ∈ Σn,2d and a SONC part f2 ∈ Cn,2d .

SOS+SONC is a proper cone inside PSD for all non-
Hilbert cases
Theorem 1. (Hilbert 1888 analogue for SOS+SONC) It holds
(Σ + C)n,2d = Pn,2d if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).

Theorem 1 was proven by Averkov in [1, Cor. 2.17]. Our con-
tribution is to present explicit examples of polynomials in
Pn,2d\(Σ + C)n,2d for all non-Hilbert cases. Such examples could
not be found in the literature previously.

Lemma 1. The Robinson form R1(x, y, z) = x6 + y6 + z6 −(
x4y2 + x4z2 + y4x2 + y4z2 + z4x2 + z4y2

)
+ 3x2y2z2 ∈ H3,6 satis-

fies R1 ∈ P3,6\(Σ + C)3,6. (n, 2d) = (4, 4): similar.

Lemma 2. If f ∈ Pn,2d\(Σ + C)n,2d then f ∈ Pn+1,2d\(Σ + C)n+1,2d
and x21 ∈ Pn,2(d+1)\(Σ + C)n,2(d+1).

Figure 1: Newton polytope of R1.

SOS+SONC cone is a nontrivial extension of
SOS∪SONC for all non-Hilbert cases
Theorem 2. It holds Σn,2d ∪Cn,2d = (Σ+C)n,2d if and only if n = 2

or 2d = 2 or (n, 2d) = (3, 4).

Figure 2: Graphical illustration of inner approximations of the PSD cone.

Open problems / Future work
1. Soon: Combination of SDP and REP approaches for deciding

membership to (Σ + C)n,2d . (GitHub: @schick-moritz)
2. How can SOS+SONC be used in polynomial optimization and

how does it compare to SOS/SONC? Can it be used in a hierar-
chical way like the SOS in Lasserre’s hierarchy?

3. Is there a set-theoretic characterization of Σn,2d ∩ Cn,2d?
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