Papers of Oliver Schnürer
Papers of Oliver Schnürer
Ἀγεωμέτρητος μηδεὶς εἰσίτω
(Πλάτων )
See also: arXiv
MathSciNet
Here you can find selected aspects of
some of my papers.
In refereed journals
Mean
curvature flow in asymptotically flat product spacetimes,
Klaus Kroencke, Oliver Lindblad Petersen, Felix Lubbe, Tobias
Marxen, Wolfgang Maurer, Wolfgang Meiser, Oliver C. Schnürer,
Áron Szabó, Boris Vertman,
J. Geom. Anal. 31 (2021), no. 6, 5451-5479.
Weak solutions to mean
curvature flow respecting obstacles,
Melanie Rupflin and Oliver C. Schnürer,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), no. 4,
1429-1467.
Mean
curvature flow without singularities, Mariel Sáez
Trumper and Oliver C. Schnürer, J. Differential Geom. 97
(2014), no. 3, 545-570.
Stability of hyperbolic
space under Ricci flow,
Oliver C. Schnürer, Felix Schulze, and Miles Simon,
Comm. Anal. Geom. 19 (2011), no. 5, 1023-1047.
Stability of mean convex cones
under mean curvature flow,
Julie Clutterbuck and Oliver C. Schnürer
Math. Z. 267 (2011), no. 3-4, 535-547.
Evolution of convex lens-shaped networks under
curve shortening flow,
Oliver C. Schnürer, Abderrahim Azouani, Marc Georgi,
Juliette Hell, Nihar Jangle, Amos Koeller, Tobias Marxen,
Sandra Ritthaler, Mariel Sáez, Felix Schulze, and Brian Smith,
Trans. Amer. Math. Soc. 363 (2011), 2265--2294.
Stability of Euclidean space under
Ricci flow,
Oliver C. Schnürer, Felix Schulze, and Miles Simon,
Comm. Anal. Geom. 16 (2008), no. 1, 127-158.
Self-similarly expanding
networks to curve shortening flow,
Oliver C. Schnürer and Felix Schulze,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 4, 511-528.
Entire spacelike hypersurfaces
of constant Gauß curvature in Minkowski space,
Pierre Bayard and Oliver C. Schnürer,
J. reine angew. Math. 627 (2009), 1-29.
Convexity estimates for flows by
powers of the mean curvature,
Felix Schulze, appendix with Oliver C. Schnürer,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), no. 2, 261--277.
Stability of translating solutions
to mean curvature flow,
Julie Clutterbuck, Oliver C. Schnürer, and Felix Schulze,
Calc. Var. Partial Differential Equations 29 (2007), no. 3, 281--293.
Convex functions with unbounded gradient,
Results Math. 48 (2005), 158-161.
Surfaces expanding by the inverse
Gauß curvature flow,
J. reine angew. Math. 600 (2006), 117-134.
Surfaces contracting with
speed |A|2 ,
J. Differential Geom. 71 (2005), no. 3, 347-363.
Schouten tensor equations in conformal
geometry with prescribed boundary metric,
Electron. J. Diff. Eqns., Vol. 2005 (2005), No. 81, 17 pp.
Stability of gradient Kähler-Ricci solitons,
Albert Chau and Oliver C. Schnürer,
Comm. Anal. Geom. 13 (2005), no. 4, 769-800.
Translating
solutions for Gauß curvature flows with Neumann boundary condition,
Oliver C. Schnürer and Hartmut Schwetlick,
Pacific J. Math. 213 (2004), no. 1, 89-109.
Flows towards reflectors,
Analysis 23 (2003), 261-272.
Translating
solutions to the second boundary
value problem for curvature flows,
Manuscripta Math. 108 (2002), 319-347.
Neumann
and second boundary value problems for Hessian and Gauß
curvature flows,
Oliver C. Schnürer and Knut Smoczyk,
Annales de l'Institut Henri Poincaré.
Analyse Non Linéaire 20 (2003), 1043-1073.
Hypersurfaces of prescribed Gauß curvature
in exterior domains,
Felix Finster and Oliver C. Schnürer,
Calc. Var. Partial Differential Equations 15 (2002), 67-80.
Evolution of hypersurfaces in central force
fields,
Oliver C. Schnürer and Knut Smoczyk,
J. reine angew. Math. 550 (2002), 77-95.
A generalized Minkowski problem with Dirichlet
boundary condition,
Trans. Amer. Math. Soc. 355 (2003), 655-663.
The Dirichlet problem for Weingarten
hypersurfaces in Lorentz manifolds,
Math. Z. 242 (2002), 159-181.
Other papers
In books
Geometric
flow equations
Geometric flows and the geometry of space-time, 77–121,
Tutor. Sch. Workshops Math. Sci., Birkhäuser/Springer, Cham, 2018.
If we don't mention the author, the paper is by Oliver C. Schnürer.