
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. REINHARD RACKE DIPL.-MATH. OLAF WEINMANN

2. Juli 2007



## Analysis II 12. Übungsblatt

**Aufgabe 12.1** Zeigen Sie, dass es keinen Homöomorphismus  $\gamma \colon [0,1] \longrightarrow [0,1] \times [0,1]$  gibt. HINWEIS: Argumentieren Sie mit Wegzusammenhang.

**Aufgabe 12.2** Gegeben sei die Kugel  $K := \{v \in \mathbb{R}^3 : |v| \le 1\}.$ 

(i) Finden Sie eine Folge  $(z_n)_{n\in\mathbb{N}}$  mit  $z_n\in(-1,1)$   $(n\in\mathbb{N})$  und  $z_n\neq z_m$   $(n\neq m)$ , so dass

$$K \setminus \bigcup_{n \in \mathbb{N}} \{(x, y, z) \in \mathbb{R}^3 : z = z_n\}$$

quadrierbar ist.

(ii) Finden Sie eine Folge  $(z'_n)_{n\in\mathbb{N}}$ , so dass

$$K \setminus \bigcup_{n \in \mathbb{N}} \{(x, y, z) \in \mathbb{R}^3 : z = z'_n\}$$

nicht quadrierbar ist.

**Aufgabe 12.3** Führen Sie im  $\mathbb{R}^3$  Kugelkoordinaten, also den Radius r als Abstand vom Nullpunkt, den Winkel  $\varphi$  in der x-y-Ebene und den Winkel  $\theta$  als Winkel zur z-Achse, ein.

- 1. (a) Wie lassen sich die Koordinaten x, y, z durch die Kugelkoordinaten ausdrücken?
  - (b) In welchem Bereich variieren letztere?
  - (c) Wie lautet in diesem Zusammenhang die Transformationsformel?
- 2. Es sei R>0 gegeben. Die Halbkugel  $B=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2\leq R^2, z\geq 0\}$  sei mit einer Masse angefüllt, deren Dichte in einem Punkt  $(x,y,z)\in B$  proportional zum Abstand dieses Punktes von der Grundfläche ist, d.h.  $\rho(x,y,z)=az$ , wobei a>0. Berechnen Sie die Gesamtmasse M dieser Halbkugel als Integral der Massendichte  $\rho$  über die Halbkugel.

**Aufgabe 12.4** Berechnen Sie  $\int_{\Gamma} \langle v(t), dx \rangle$  für

1. 
$$\Gamma: t \longrightarrow (\cos(t), \sin(t)), t \in [0, 2\pi], v(x, y) = (x^2 + y, 2xy),$$

2. 
$$\Gamma: t \longmapsto (2t, -t, t^2), t \in [0, 1], v(x, y, z) = (3x + y, 2y, 2z + y - x).$$