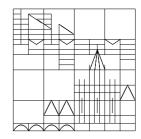
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. REINHARD RACKE DIPL.-MATH. OLAF WEINMANN

11. Juni 2007

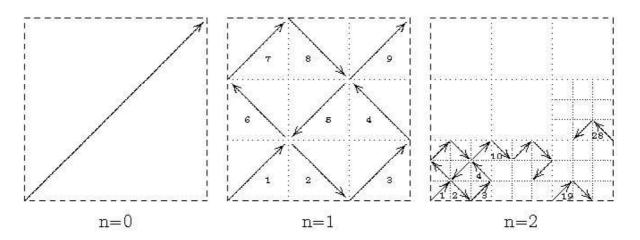


Analysis II 9. Übungsblatt

Aufgabe 9.1 (Konstruktion einer Peano-Kurve) Wir definieren stetige, stückweise lineare Abbildungen $f_n: I \longrightarrow I \times I$, I = [0, 1] mit $f_n(0) = (0, 0)$ und $f_n(1) = (1, 1)$ auf folgende Weise:

$$f_0(x) = (x, x)$$
 für alle $x \in I$.

Um f_1 zu definieren, werde I in 9 gleich lange Strecken geteilt, also in die Teilintervalle $\left[\frac{i-1}{9},\frac{i}{9}\right]$ mit $1 \leq i \leq 9$. Entsprechend wird $I \times I$ in 9 gleich große Quadrate geteilt. Diese Quadrate werden geeignet durchnummeriert (siehe das Bild n=1), und das i-te Intervall $\left[\frac{i-1}{9},\frac{i}{9}\right]$ wird nun unter f_1 in das i-te Quadrat abgebildet, und zwar werden die einzelnen Teilintervalle jeweils auf Diagonalen abgebildet. Um f_2 zu definieren, werde I in 9^2 gleich lange Strecken geteilt. Entsprechend wird $I \times I$ in 9^2 gleich große Quadrate geteilt. Die Nummerierung erfolgt wie im Bild n=2 angedeutet (Man läuft innerhalb der 9 Teilquadrate des Schritts n=1 jeweils erst horizontal, dann vertikal.), und unter f_2 wird wieder das i-te Intervall in eine Diagonale des i-ten Quadrats abgebildet. Allgemein: Um f_n zu definieren, werde I in 9^n gleich lange Strecken geteilt; entsprechend wird $I \times I$ in 9^n gleich große Quadrate geteilt. Die Nummerierung der Quadrate erfolgt induktiv. Man läuft jeweils erst horizontal, dann vertikal. Unter f_n wird das i-te Intervall in eine Diagonale des i-ten Quadrats abgebildet.



Zeigen Sie, dass die Funkionenfolge $(f_n)_{n\in\mathbb{N}}$ gegen eine Funktion f konvergiert, welche stetig und surjektiv, nicht aber injektiv ist.

Aufgabe 9.2 Es sei $I \subset \mathbb{R}^n$ konvex und $M \subset \mathbb{R}^n$ eine Menge mit $I \cap M \neq \emptyset$. Zeigen Sie, dass $I \subset \mathring{M}$ oder $I \cap \partial M \neq \emptyset$ gilt.

Aufgabe 9.3 Für achsenparallele Rechtecke $R = I_1 \times I_2 \subset \mathbb{R}^2$, wobei I_1 und I_2 beschränkte Intervalle in \mathbb{R} seien, sei eine nichtnegative reellwertige Funktion μ erklärt, die folgenden Bedingungen genüge:

- (i) Ist R disjunkt in R_1 und R_2 zerlegt, so gilt: $\mu(R) = \mu(R_1) + \mu(R_2)$.
- (ii) Für jedes $v \in \mathbb{R}^2$ gilt $\mu(v+R) = \mu(R)$.
- (iii) $\mu([0,1] \times [0,1]) = 1$.

Zeigen Sie:

- (a) $\mu([a_1,b_1)\times[a_2,b_2])=\mu([a_1,b_1]\times[a_2,b_2])$ (d.h. entartete Rechtecke wie beispielsweise $[b_1,b_1]\times[a_2,b_2]$ haben den "Inhalt" Null).
- (b) $\mu([a_1,b_1]\times[a_2,b_2])=(b_1-a_1)(b_2-a_2).$ HINWEIS: Für $x\geq 0$ betrachte $f(x):=\mu([0,x]\times[0,1])$ und zeige f(x)=x. Wähle dabei zunächst $x\in\mathbb{Q}.$

Abgabetermin: Montag 18. Juni 2007, vor der Vorlesung in die Briefkästen bei F411.