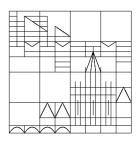
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. REINHARD RACKE DIPL.-MATH. OLAF WEINMANN

13. Mai 2008



Funktionalanalysis 4. Übungsblatt

Definition 4.1 Es sei X ein \mathbb{K} -Vektorraum. Eine Familie $(\|\cdot\|_{\lambda})_{\lambda\in\Lambda}$ von Halbnormen auf Xheißt separierend, wenn für jedes $x \neq 0$ ein $\lambda \in \Lambda$ existiert mit $||x||_{\lambda} \neq 0$.

Aufgabe 4.2 Es sei X ein K-Vektorraum. Weiter sei $(\|\cdot\|_n)_{n\in\mathbb{N}}$ eine separierende Familie von Halbnormen auf X. Zeigen Sie:

(i) Durch die Vorschrift

$$d(x,y) := \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\|x - y\|_i}{1 + \|x - y\|_i}, \quad x, y \in X$$

wird eine Metrik d auf X definiert.

(ii) Die durch die Metrik aus (i) induzierte Topologie stimmt mit der Topologie von Aufgabe 3.6 überein.

Es sei $\Omega \subset \mathbb{R}^n$ offen. Für eine kompakte Menge $K \subset \Omega$, $m \in \mathbb{N}$ und $f \in \mathcal{C}^{\infty}(\Omega)$ Aufgabe 4.3 definieren wir

$$p_{K,m}(f) := \sup_{|\alpha| \le m, x \in K} |\partial^{\alpha} f(x)|,$$

hierbei ist $\partial^{\alpha} := \partial_{x_1}^{\alpha_1} \cdot \ldots \cdot \partial_{x_n}^{\alpha_n}, \ |\alpha| := \sum_{i=1}^n \alpha_i \text{ und } \alpha \in \mathbb{N}_0^n.$ Sei nun $K_0 \subset K_1 \subset \ldots$ eine Folge von kompakten Teilmengen von Ω mit $\Omega = \bigcup_{j=0}^{\infty} K_j$. Zeigen Sie: Die Familie

$$\mathcal{H} := \{ p_{K_i, m} : j, m \in \mathbb{N}_0 \}$$

ist eine separierende Familie von Halbnormen auf $\mathcal{C}^{\infty}(\Omega)$.

Aufgabe 4.4 Für $f \in \mathcal{C}^1([a,b],\mathbb{R})$ definieren wir $||f||_{\mathcal{C}^1} := ||f||_{\infty} + ||f'||_{\infty}$.

- (i) Zeigen Sie, dass $\left(\mathcal{C}^1([a,b],\|\cdot\|_{\mathcal{C}^1}\right)$ ein normierter Raum ist.
- (ii) Zeigen Sie, dass die Abbildung $A: \mathcal{C}^1([a,b]) \longrightarrow \mathcal{C}([a,b])$ mit $f \longmapsto f'$ linear und stetig ist. Berechnen Sie schließlich

$$||A|| := \sup_{||f||_{C^1} = 1} ||Af||.$$

Aufgabe 4.5 Es sei $E:=\ell^2:=\left\{(x_n)_{n\in\mathbb{N}}\left|\forall n\in\mathbb{N}:x_n\in\mathbb{R},\ \sum_{j=1}^\infty|x_j|^2<\infty\right.\right\}$ und F der Untervektorraum

$$F = \{x \in E : x_n = 0 \text{ für fast alle } n \in \mathbb{N}\}.$$

Weiter sei F' ein algebraisches Komplement zu F in E, d.h. F' ist ein Untervektorraum von E mit F+F'=E und $F\cap F'=\{0\}$. Zeigen Sie, dass $f(x):=\sum_{n=1}^\infty y_n$ für x=y+y' mit $y=(y_n)_{n\in\mathbb{N}}\in F$ und $y'\in F'$ wohldefiniert, linear und nicht stetig ist.

Abgabetermin: Montag 19. Mai 2008, vor 10:00 Uhr in die Briefkästen bei F411.