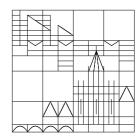
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. REINHARD RACKE DIPL.-MATH. OLAF WEINMANN

16. Juni 2008



Funktionalanalysis 9. Übungsblatt

Aufgabe 9.1 Es sei X ein normierter Raum und $M \subset X$ sei abgeschlossen und konvex. Weiter sei $x_0 \in X \setminus M$. Zeigen Sie: Es existiert ein $x' \in X'$ und ein $\alpha \in \mathbb{R}$ mit

Re
$$x'x \le \alpha$$
 für $x \in M$ und Re $x'x_0 > \alpha$.

Aufgabe 9.2 Es sei $(X, \langle \cdot, \cdot \rangle)$ ein Hilbertraum und $A : D(A) \subset X \longrightarrow X$ ein linearer Operator. Für $x, y \in D(A)$ sei $\langle x, y \rangle_A := \langle x, y \rangle + \langle Ax, Ay \rangle$. Zeigen Sie, dass A genau dann abgeschlossen ist, wenn $(D(A), \langle \cdot, \cdot \rangle_A)$ ein Hilbertraum ist.

Aufgabe 9.3 Es seien E_{ν} , $\nu=1,2,3$ Banachräume, $T\colon E_1\longrightarrow E_2$ sei linear, $S\colon E_2\longrightarrow E_3$ sei linear, injektiv und stetig. Schließlich sei $ST\colon E_1\longrightarrow E_3$ stetig. Zeigen Sie, dass auch T stetig ist.

Aufgabe 9.4 Seien X normierter Raum und $A_j : D(A_j) \subset X \longrightarrow X$ (j = 1, 2) abgeschlossene Abbildungen. Ist $A_1 + A_2 : D(A_1) \cap D(A_2) \subset X \longrightarrow X$, $x \longmapsto A_1 x + A_2 x$ abgeschlossen?