Übungen zur Vorlesung *Algebra I*Blatt 13 – Musterlösung

Hinweis: Dies ist ein freiwilliges Zusatzblatt, welches weder korrigiert noch besprochen wird, für die Vorbereitung auf die Klausur jedoch hilfreich ist.

Aufgabe 13.1. (Multiplikativität des Gruppenindex)

Seien G,H,K Gruppen, für die $K \leq H \leq G$ gilt und für welche die Gruppenindizes [G:H] und [H:K] endlich sind.

Behauptung: [G:K] ist endlich ist und es gilt

$$[G:K] = [G:H][H:K].$$

Beweis: Wir haben:

- $[G:K] = |\{gK \mid g \in G\}|,$
- $[G:H] = |\{gH \mid g \in G\}|$,
- $[H:K] = |\{hK \mid h \in H\}|.$

Betrachte die Abbildung

$$\varphi \colon \{gK \mid g \in G\} \to \{gH \mid g \in G\},\$$

mit der Abbildungsvorschrift $\varphi(gK)=gH$ für $g\in G.$ Wir zeigen, dass φ eine wohldefinierte surjektive Abbildung ist:

- Wohldefiniertheit:
 - $-\operatorname{Im}(\varphi)\subseteq\{gH\mid g\in G\}$: Klar.
 - Vertreterunabhängigkeit: Seien $g_1,g_2\in G$ mit $g_1K=g_2K$. Zu zeigen: $\varphi(g_1K)=\varphi(g_2K)$. Wegen Proposition 15.7(2) gilt $g_1^{-1}g_2\in K$. Da $K\leq H$, gilt also insbesondere $g_1^{-1}g_2\in H$. Erneutes Anwenden von Proposition 15.7(2) ergibt damit $\varphi(g_1K)=g_1H=g_2H=\varphi(g_2K)$.
- Surjektivität: Für $g \in G$ gilt $\varphi(gK) = gH$.

Wir zeigen nun, dass für jedes $g \in G$ das Urbild $\varphi^{-1}(gH)$ die Kardinalität [H:K] hat. Daraus folgt letztlich die Behauptung. Sei also $g \in G$. Wir bemerken zunächst, dass

$$\varphi^{-1}(gH) = \{ g'K \mid g' \in G, g'H = gH \},\$$

und wir erinnern uns, dass die Bedingung gH = g'H nach Proposition 15.7(2) äquivalent ist zu $q^{-1}q' \in H$. Nun betrachten wir die Abbildung

$$\psi \colon \varphi^{-1}(gH) \to \{hK \mid h \in H\}$$

mit der Abbildungsvorschrift $\psi(g'K)=g^{-1}g'K$ für $g'\in G$ mit $g'K\in \varphi^{-1}(gH)$ bzw. mit q'H=qH. Wir zeigen, dass ψ eine wohldefinierte Bijektion ist:

- Wohldefiniertheit:
 - $-\operatorname{Im}(\psi) \subset \{hK \mid h \in H\}:$ Sei $g' \in G$ mit $g'K \in \varphi^{-1}(gH)$ bzw. mit g'H = gH. Nach Proposition 15.7(2) gilt $g^{-1}g' \in H$ und folglich

$$\psi(g'K) = g^{-1}g'K = (\underbrace{g^{-1}g'}_{\in H})K \in \{hK \mid h \in H\}.$$

- Vertreterunabhängigkeit: Seien $g', g'' \in G$ mit $g'K, g''K \in \varphi^{-1}(gH)$ bzw. mit g'H = g''H = gH. Gilt q'K = q''K, so ergibt die Multiplikation von links mit q^{-1} , dass auch $\psi(q'K) =$ $q^{-1}q'K = q^{-1}q''K = \psi(q'K)$ gilt.
- Injektivität:

Seien $g',g''\in G$ mit $g'K,g''K\in \varphi^{-1}(gH)$ bzw. mit g'H=g''H=gH, und gelte $\psi(q'K) = \psi(q''K)$. Wegen $q^{-1}q'K = q^{-1}q''K$ ergibt die Multiplikation von links mit q, dass auch $g'K = gg^{-1}g'K = gg^{-1}g''K = g''K$ gilt.

 Surjektivität: Sei $h \in H$. Setze $g' = gh \in G$. Es gilt g'H = ghH = gH, also $g'K \in \varphi^{-1}(gH)$. Wir erhalten außerdem $\psi(g'K) = g^{-1}g'K = g^{-1}ghK = hK$.

Wir haben also eine surjektive Abbildung φ von $\{gK \mid g \in G\}$ in die nach Voraussetzung endliche Menge $\{qH \mid q \in G\}$ und für jedes Urbild eines Elements unter dieser Abbildung eine Bijektion ψ zu der nach Voraussetzung endlichen Menge $\{hK \mid h \in H\}$. Ersteres ergibt den Faktor [G:H] und letzteres den Faktor [H:K]. Insgesamt erhalten wir

$$[G:K] = [G:H][H:K].$$

Insbesondere ist auch der Gruppenindex [G:K] endlich.

Bemerkung: Noch formaler könnte eine Bijektion

$$\sigma \colon \{gK \mid g \in G\} \to \{gH \mid g \in G\} \times \{hK \mid h \in H\}$$

konstruiert werden. Damit erhält man ebenfalls

$$\begin{split} [G:K] &= |\{gK \mid g \in G\}| \\ &= |\{gH \mid g \in G\} \times \{hK \mid h \in H\}| \\ &= |\{gH \mid g \in G\}| \cdot |\{hK \mid h \in H\}| \\ &= [G:H][H:K]. \end{split}$$

Aufgabe 13.2. (Galoiserweiterungen)

Seien F, K und E Körper mit $F \subseteq K \subseteq E$.

Behauptung:

- (i) Falls E/F eine normale Erweiterung ist, dann ist auch E/K eine normale Erweiterung.
- (ii) Falls E/F eine separable Erweiterung ist, dann ist auch E/K eine separable Erweiterung.
- (iii) Falls E/F eine Galoiserweiterung ist, dann ist auch E/K eine Galoiserweiterung.
- (iv) Falls E/F eine Galoiserweiterung ist und $\operatorname{Gal}(E/K) \leq \operatorname{Gal}(E/F)$ gilt, dann ist K/F eine Galoiserweiterung.

Beweis:

- (i) Bemerke zunächst, dass jede normale Körpererweiterung algebraisch ist. Sei nun E/F normal. Dann ist E der Zerfällungskörper eine Menge $\mathcal{E} \subseteq F[x]$. Wegen $F[x] \subseteq K[x]$, ist E insbesondere der Zerfällungskörper einer Menge $\mathcal{E} \subset K[x]$. Also ist auch E/K normal.
- (ii) Bemerke zunächst, dass jede separable Körpererweiterung algebraisch ist. Sei nun E/F separabel und sei $\alpha \in E$. Dann ist das Minimalpolynom $m_{\alpha,F}(x)$ separabel. Wegen $m_{\alpha,F}(\alpha)=0$ wissen wir nach Proposition 10.3, dass das Minimalpolynom $m_{\alpha,K}(x)$ das Polynom $m_{\alpha,F}(x)$ in K[x] teilt. Folglich muss auch das Minimalpolynom $m_{\alpha,K}(x)$ separabel sein, denn jede mehrfache Nullstelle von $m_{\alpha,K}(x)$ wäre auch eine mehrfache Nullstelle von $m_{\alpha,F}(x)$.
- (iii) Sei E/F eine Galoiserweiterung. Dann ist E/F endlich, normal und separabel. Nach (i) und (ii) ist E/K ebenfalls normal und separabel. Nach Satz 10.11 gilt $\infty > [E:F] = [E:K][K:F]$. Also muss auch E/K endlich sein. Dies zeigt, dass E/K eine Galoiserweiterung ist.
- (iv) Sei E/F eine Galoiserweiterung und gelte $\operatorname{Gal}(E/K) \subseteq \operatorname{Gal}(E/F)$. Zu zeigen: K/F ist eine Galoiserweiterung.

- K/F ist endlich: Nach Satz 10.11 gilt [E:F]=[E:K][K:F]. Als Galoiserweiterung ist E/F endlich, es gilt also $[E:F]<\infty$. Insbesondere muss auch $[K:F]<\infty$ gelten.
- K/F ist separabel: Sei $\alpha \in K \subseteq E$. Nach (ii) ist E/K eine Galoiserweiterung, also insbesondere separabel. Daher ist auch das Minimalpolynom $m_{\alpha,F}(x)$ separabel.
- K/F ist normal: Setze $H:=\operatorname{Gal}(E/K)$ und $G:=\operatorname{Gal}(E/F)$. Da E/K nach (ii) eine Galoiserweiterung ist, gilt $\operatorname{Inv}(H)=\operatorname{Inv}(\operatorname{Gal}(E/K))=K$ nach Satz 24.3(a). Aus $H \unlhd G$ folgt außerdem mit Satz 24.5(iii), dass $\operatorname{Inv}(H)/F$ normal ist. Somit ist K/F normal.

Hilfsresultat (*).

Sei E/L eine Galoiserweiterung und $\alpha \in E$ mit $E = L(\alpha)$ (d.h. α ist primitives Element). Dann existiert zu jeder Nullstelle $\beta \in E$ von $m_{\alpha,L}(x)$ ein eindeutiger L-Automorphismus σ_{β} von E mit $\sigma_{\beta}(\alpha) = \beta$. Insbesondere ist die Abbildung

$$\psi \colon \{\beta \in E \mid m_{\alpha,L}(\beta) = 0\} \to \operatorname{Gal}(E/L), \ \beta \to \sigma_{\beta}$$

bijektiv.

Beweis:

- Existenz von σ_{β} : Folgt aus Satz 9.14 mit F=F'=L, K=K'=E, $\varphi=\mathrm{id}_L$ und $p(x)=m_{\alpha,L}(x)$.
- Eindeutigkeit von σ_{β} : Sei σ_{β} ein L-Automorphismus von E mit $\sigma_{\beta}(\alpha) = \beta$ und sei $\gamma \in E = L(\alpha)$. Nach Aufgabe 7.1(a) gibt es $p(x) \in F[x]$ mit $\gamma = p(\alpha)$. Nun folgt

$$\sigma_{\beta}(\gamma) = \sigma_{\beta}(p(\alpha)) = p(\sigma_{\beta}(\alpha)) = p(\beta),$$

da $\sigma_{\beta}|_{L}=L$ und $\sigma_{\beta}(\alpha)=\beta$. Dies zeigt, dass σ_{β} durch die Eigenschaften $\sigma_{\beta}|_{L}=L$ und $\sigma_{\beta}(\alpha)=\beta$ eindeutig bestimmt ist.

- Die Wohldefiniertheit von ψ folgt aus der eindeutigen Wahl von σ_{β} .
- Injektivität von ψ : Seien $\beta_1,\beta_2\in E$ Nullstellen von $m_{\alpha,L}(x)$ mit $\sigma_{\beta_1}=\sigma_{\beta_2}$. Dann gilt

$$\beta_1 = \sigma_{\beta_1}(\alpha) = \sigma_{\beta_2}(\alpha) = \beta_2.$$

• Surjektivität von ψ :

Sei $\sigma \in \operatorname{Gal}(E/L)$. Setze $\beta = \sigma(\alpha) \in E$. Dann ist β eine Nullstelle von $m_{\alpha,L}(x)$, denn $\sigma|_L = L$ impliziert

$$m_{\alpha,L}(\beta) = m_{\alpha,L}(\sigma(\alpha)) = \sigma(m_{\alpha,L}(\alpha)) = \sigma(0) = 0$$

(in der Tat "kommutiert" σ hier mit $m_{\alpha,L}(x)$, denn σ fixiert L und die Koeffizienten von $m_{\alpha,L}(x)$ liegen in L). Weiter folgt aus der Eindeutigkeit von σ_{β} , dass $\psi(\beta)=\sigma_{\beta}=\sigma$.

Aufgabe 13.3. (Galois-Korrespondenz I)

Sei $K = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Zeigen Sie, dass K/\mathbb{Q} eine Galoiserweiterung ist.

Bemerkung: Nach Aufgabe 6.3(b) gilt $K = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

(i) **Behauptung:** K/\mathbb{Q} ist eine Galoiserweiterung.

Beweis:

Nach Satz 24.3 genügt es zu zeigen, dass K der Zerfällungskörper eines separablen Polynoms $p(x) \in \mathbb{Q}[x]$ ist. Wir zeigen, dass K der Zerfällungskörper des separablen Polynoms $p(x) = (x^2 - 2)(x^2 - 3) \in \mathbb{Q}[x]$ ist:

- p(x) ist separabel: Das Polynom hat die vier verschiedenen einfachen Nullstellen $\pm \sqrt{2}, \pm \sqrt{3}.$
- K ist der Zerfällungskörper von p(x): Die Nullstellen von p(x) in $\mathbb C$ sind $\pm \sqrt{2}$ und $\pm \sqrt{3}$. Diese sind schon alle in K enthalten. Weiterhin gilt $K = \mathbb Q(\sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3})$, weshalb K schon der Zerfällungskörper von p(x) ist.
- (ii) Bestimmen Sie $Gal(K/\mathbb{Q})$.

Lösung: Wir gehen Schritt für Schritt vor.

(1) Zähle die Elemente in $Gal(K/\mathbb{Q})$: Wir haben

$$[K:\mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}):\mathbb{Q}] = \underbrace{[\mathbb{Q}(\sqrt{2}, \sqrt{3})}_{=\mathbb{Q}(\sqrt{3})(\sqrt{2})} : \mathbb{Q}(\sqrt{3})] \underbrace{[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]}_{=2} = 2 \cdot 2 = 4.$$

Tatsächlich haben wir $m_{\sqrt{2},\mathbb{Q}(\sqrt{3})}=x^2-2\in\mathbb{Q}[x]\subseteq\mathbb{Q}(\sqrt{3})[x]$ sowie $m_{\sqrt{3},\mathbb{Q}}=x^2-3\in\mathbb{Q}[x]$, denn beide Polynome sind irreduzibel (wende beispielsweise Eisenstein mit 2 bzw. 3 sowie Lemma von Gauß an). Aus Lemma 23.5 folgt

$$|\mathrm{Gal}(K/\mathbb{Q})| = [K : \mathbb{Q}] = 4.$$

- (2) Betrachte geeignete Untergruppen: (Problem: Es werden zwei Elemente adjungiert, nur eins wäre leichter.) Betrachte zunächst nur die Teilgruppen $\operatorname{Gal}(K/\mathbb{Q}(\sqrt{2}))$ und $\operatorname{Gal}(K/\mathbb{Q}(\sqrt{3}))$ von $\operatorname{Gal}(K/\mathbb{Q})$ (vgl. Proposition 23.4).
- (3) Wende Hilfsresultat (*) an:
 - Sei $\tau\in \mathrm{Gal}(K/\mathbb{Q}(\sqrt{2}))$ der eindeutige $\mathbb{Q}(\sqrt{2})$ -Automorphismus von K mit $\tau(\sqrt{3})=-\sqrt{3}$.
 - Sei $\sigma\in \mathrm{Gal}(K/\mathbb{Q}(\sqrt{3}))$ der eindeutige $\mathbb{Q}(\sqrt{3})$ -Automorphismus von K mit $\sigma(\sqrt{2})=-\sqrt{2}.$
- (4) Erstelle Verknüpfungstabelle, um genügend verschiedene Elemente zu finden:

	id	σ	au	$\sigma\tau$
$\sqrt{2}$	$\sqrt{2}$	$-\sqrt{2}$	$\sqrt{2}$	$-\sqrt{2}$
$\sqrt{3}$	$\sqrt{3}$	$\sqrt{3}$	$-\sqrt{3}$	$-\sqrt{3}$

Wir haben also 4 verschiedene Elemente $id, \sigma, \tau, \sigma\tau$ in der 4-elementigen Gruppe $Gal(K/\mathbb{Q})$ gefunden. Somit erhalten wir

$$Gal(K/\mathbb{Q}) = \{id, \sigma, \tau, \sigma\tau\}.$$

(5) Vergleichte ggf. mit bekannten Gruppen: Aus der obigen Verknüpfungstabelle wird klar, dass

$$\mathrm{Gal}(K/\mathbb{Q})=\{\mathrm{id},\sigma,\tau,\sigma\tau\}\simeq C_2\times C_2=V_4$$
 (Kleinsche Vierergruppe).

(iii) Geben Sie alle Zwischenkörper der Erweiterung K/\mathbb{Q} an.

Lösung: Ziel ist es, den Hauptsatz der Galois-Theorie (HGT) anzuwenden.

• Bestimme die UG von $\operatorname{Gal}(K/\mathbb{Q})$:

$$- H_1 = {\mathrm{id}}$$

$$-H_2 = \{ id, \sigma \} = \langle \sigma \rangle$$

$$- H_3 = \{ id, \tau \} = \langle \tau \rangle$$

$$-H_4 = \{ id, \sigma \tau \} = \langle \sigma \tau \rangle$$

$$-H_5 = {\mathrm{id}, \sigma, \tau, \sigma\tau} = \mathrm{Gal}(K/\mathbb{Q})$$

Prüfe, dass dies in der Tag alle UG sind (Gruppeneigenschaften).

- Bestimme die entsprechenden Fixkörper:
 - Offensichtlich gilt $K_1 := Inv(H_1) = K$.

 $- \underline{\mathsf{Beh.:}} \ K_2 := \mathrm{Inv}(H_2) = \mathbb{Q}(\sqrt{3}).$

Bew.: Da $\sigma \in H_2$ das Element $\sqrt{3}$ fixiert, gilt $\mathbb{Q}(\sqrt{3}) \subseteq \operatorname{Inv}(H_2)$. Ferner gilt

$$[\operatorname{Inv}(H_2):\mathbb{Q}]\stackrel{\mathsf{HGT}}{=} [\operatorname{Gal}(K/\mathbb{Q}):H_2]\stackrel{\mathsf{Lagrange}}{=} \frac{4}{2} = 2 = [\mathbb{Q}(\sqrt{3}):\mathbb{Q}]$$

 \Diamond

 \Diamond

und somit schließlich $\mathbb{Q}(\sqrt{3}) = \operatorname{Inv}(H_2)$.

 $- \underline{\mathsf{Beh.:}} \ K_3 := \mathrm{Inv}(H_3) = \mathbb{Q}(\sqrt{2}).$

Bew.: Da $\tau \in H_3$ das Element $\sqrt{2}$ fixiert, gilt $\mathbb{Q}(\sqrt{2}) \subseteq \operatorname{Inv}(H_3)$. Ferner gilt

$$[\operatorname{Inv}(H_3):\mathbb{Q}]\stackrel{\mathsf{HGT}}{=} [\operatorname{Gal}(K/\mathbb{Q}):H_3]\stackrel{\mathsf{Lagrange}}{=} \frac{4}{2} = 2 = [\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$$

und somit schließlich $\mathbb{Q}(\sqrt{2}) = \operatorname{Inv}(H_3)$.

- Beh.: $K_4 := \operatorname{Inv}(H_4) = \mathbb{Q}(\sqrt{2}\sqrt{3})$. Bew.: Da $\sigma \tau \in H_4$ das Element $\sqrt{2}\sqrt{3}$ fixiert (Zwischenrechnung: $\sigma \tau(\sqrt{2}\sqrt{3}) = \sigma(\sqrt{2}(-\sqrt{3})) = (-\sqrt{2})(-\sqrt{3}) = \sqrt{2}\sqrt{3}$), gilt $\mathbb{Q}(\sqrt{2}\sqrt{3}) \subseteq \operatorname{Inv}(H_4)$. Ferner gilt

$$[\operatorname{Inv}(H_4):\mathbb{Q}] \stackrel{\mathsf{HGT}}{=} [\operatorname{Gal}(K/\mathbb{Q}):H_4] \stackrel{\mathsf{Lagrange}}{=} \tfrac{4}{2} = 2 = [\mathbb{Q}(\sqrt{2}\sqrt{3}):\mathbb{Q}]$$

und somit schließlich $\mathbb{Q}(\sqrt{2}\sqrt{3}) = \text{Inv}(H_4)$.

– Nach Satz 24.3 gilt $K_5 := \operatorname{Inv}(H_5) = \mathbb{Q}$, da K/\mathbb{Q} nach (i) eine Galoiserweiterung ist.

Zwischenkörper der Erweiterung K/\mathbb{Q} :

$$K_1 = K = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3}), K_2 = \mathbb{Q}(\sqrt{3}), K_3 = \mathbb{Q}(\sqrt{2}), K_4 = \mathbb{Q}(\sqrt{2}\sqrt{3}) = \mathbb{Q}(\sqrt{2} \cdot 3) = \mathbb{Q}(\sqrt{6}), K_5 = \mathbb{Q}.$$

Aufgabe 13.4. (Galois-Korrespondenz II)

Sei $f(x) = x^4 - 2 \in \mathbb{Q}[x]$ und sei L ein Zerfällungskörper von f.

(i) Behauptung: Es gilt $Gal(L/\mathbb{Q}) \cong D_4$.

Beweis: Was steckt dahinter?

- Bestimmen Sie $\operatorname{Gal}(L/\mathbb{Q})$ (vgl. Aufgabe 13.3(ii)).
- (0) Verstehe L:

L wird als Zerfällungskörper von f durch die Nullstellen von f erzeugt. Diese sind $\alpha, -\alpha, i\alpha, -i\alpha$, wobei $\alpha = \sqrt[4]{2}$. Also erhalten wir

$$L = \mathbb{Q}(\pm \alpha, \pm i\alpha) = \mathbb{Q}(\alpha, i\alpha) = \mathbb{Q}(\alpha, i).$$

(1) Zähle die Elemente in $Gal(L/\mathbb{Q})$:

Da f(x) irreduzibel ist (wende beispielsweise Eisenstein mit 2 sowie Lemma von Gauß an), ist $f(x) = m_{\alpha,\mathbb{Q}}(x)$ und somit $[\mathbb{Q}(\alpha):\mathbb{Q}] = \deg(f) = 4$. Zudem ist $g(x) = x^2 + 1 \in \mathbb{Q}[x] \subseteq \mathbb{Q}(\alpha)[x]$ irreduzibel, da $\deg(g) = 2$, $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$ und g(x) keine Nullstelle in \mathbb{R} hat. Somit ist $g(x) = m_{i,\mathbb{Q}(\alpha)}(x)$ und folglich

$$[\underbrace{\mathbb{Q}(\alpha, i)}_{=\mathbb{Q}(\alpha)(i)} : \mathbb{Q}(\alpha)] = \deg(g) = 2.$$

Insgesamt erhalten wir

$$[L:\mathbb{Q}] = [\mathbb{Q}(\alpha, i) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = 4 \cdot 2 = 8.$$

Aus Lemma 23.5 folgt

$$|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}] = 8.$$

(2) Betrachte geeignete Untergruppen:

(Problem: Es werden zwei Elemente adjungiert, nur eins wäre leichter.) Betrachte zunächst nur die Teilgruppen $\operatorname{Gal}(L/\mathbb{Q}(\alpha))$ und $\operatorname{Gal}(L/\mathbb{Q}(i))$ von $\operatorname{Gal}(L/\mathbb{Q})$ (vgl. Proposition 23.4).

- (3) Wende Hilfsresultat (*) an:
 - Bemerke zunächst, dass $L = \mathbb{Q}(i)(\alpha)$ und

$$4 = [L : \mathbb{Q}] = [\mathbb{Q}(i)(\alpha) : \mathbb{Q}(i)] \underbrace{[\mathbb{Q}(i) : \mathbb{Q}]}_{=2}.$$

Dies impliziert, dass $[L:\mathbb{Q}(i)]=4$. Insbesondere ist $m_{\alpha,\mathbb{Q}(i)}(x)=f(x)$. Sei nun $\sigma\in \mathrm{Gal}(L/\mathbb{Q}(i))$ der eindeutige $\mathbb{Q}(i)$ -Automorphismus von L mit $\sigma(\alpha)=i\alpha$.

- Wir wissen bereits, dass $m_{i,\mathbb{Q}(\alpha)}(x) = g(x) = x^2 1$. Dieses Polynom hat die Nullstellen i und -i. Sei $\tau \in \operatorname{Gal}(L/\mathbb{Q}(\alpha))$ der eindeutige $\mathbb{Q}(\alpha)$ -Automorphismus von L mit $\tau(i) = -i$.
- (4) Erstelle Verknüpfungstabelle, um genügend verschiedene Elemente zu finden:

		id	τ	σ	σ^2	σ^3	$\tau\sigma$	$\tau\sigma^2$	$\tau \sigma^3$
	i	i	-i	i	i	i	-i	-i	-i
ſ	α	α	α	$i\alpha$	$-\alpha$	$-i\alpha$	$-i\alpha$	$-\alpha$	$i\alpha$

Wir haben also 8 verschiedene Elemente $\operatorname{id}, \tau, \sigma, \sigma^2, \sigma^3, \tau\sigma, \tau\sigma^2, \tau\sigma^3$ in der 8-elementigen Gruppe $\operatorname{Gal}(L/\mathbb{Q})$ gefunden. Somit erhalten wir

$$\operatorname{Gal}(L/\mathbb{Q}) = \{\operatorname{id}, \tau, \sigma, \sigma^2, \sigma^3, \tau\sigma, \tau\sigma^2, \tau\sigma^3\} = \langle \tau, \sigma \rangle.$$

(5) Vergleichte ggf. mit bekannten Gruppen:

Aus der obigen Verknüpfungstabelle wird klar, dass $\operatorname{Gal}(L/\mathbb{Q}) = \langle \tau, \sigma \rangle \simeq D_4.$

(ii) Beschreiben Sie die 10 verschiedenen Untergruppen von D_4 .

Lösung: Was steckt dahinter?

– Bestimmen Sie die UG von $Gal(L/\mathbb{Q})$ (vgl. Aufgabe 13.3(iii)).

Nach Lagrange haben die UG von D_4 wegen $|D_4|=8$ die Ordnungen 1,2,4,8. Setze $H_1:=\{\mathrm{id}\}$ und $H_{10}:=G:=\mathrm{Gal}(L/\mathbb{Q})=\langle\sigma,\tau\rangle$.

• Welche Elemente in G haben die Ordnung 2? $\tau, \sigma^2, \tau\sigma, \tau\sigma^2, \tau\sigma^3$ (vgl. Verknüpfungstabelle) Diese erzeugen UG der Ordnung 2:

$$- H_2 := \{ id, \tau \} = \langle \tau \rangle$$

$$- H_3 := \{ id, \sigma^2 \} = \langle \sigma^2 \rangle$$

$$- H_4 := \{ id, \tau \sigma \} = \langle \tau \sigma \rangle$$

$$- H_5 := \{ id, \tau \sigma^2 \} = \langle \tau \sigma^2 \rangle$$

$$- H_6 := \{ id, \tau \sigma^3 \} = \langle \tau \sigma^3 \rangle$$

• Welche Elemente in G haben die Ordnung 4? σ, σ^3 (vgl. Verknüpfungstabelle) Diese erzeugen UG der Ordnung 4:

$$-H_7 := \{ \mathrm{id}, \sigma, \sigma^2, \sigma^3 \} = \langle \sigma \rangle = \langle \sigma^3 \rangle$$

• Wie bekomme ich weitere UG der Ordnung $4 = 2 \cdot 2$? Durch zwei Elemente mit Ordnung jeweils 2:

$$\begin{split} &-H_8:=\langle \tau,\sigma^2\rangle=\{\mathrm{id},\tau,\sigma^2,\tau\sigma^2\}\\ &-H_9:=\langle \tau\sigma,\sigma^2\rangle=\{\mathrm{id},\tau\sigma,\sigma^2,\tau\sigma^2\}\\ \mathsf{Bemerke:}\ &\langle \tau,\tau\sigma\rangle=\langle \tau,\tau\sigma^3\rangle=\langle \tau\sigma,\tau\sigma^2\rangle=\langle \tau\sigma^2,\tau\sigma^3\rangle=G=H_{10}. \end{split}$$

Somit wurden alle 10 UG von $\operatorname{Gal}(L/\mathbb{Q}) \simeq D_4$ gefunden.

(iii) Bestimmen Sie die Zwischenkörper der Erweiterung L/\mathbb{Q} und geben Sie für jeden Zwischenkörper F ein primitives Element für F über \mathbb{Q} an.

Lösung: Ziel ist es, den HGT anzuwenden (vgl. Aufgabe 13.3(iii)). Bemerke zunächst, dass f(x) nach Korollar 13.8 separabel ist, da f(x) und $Df(x)=4x^3$ offensichtlich teilerfremd sind. Somit ist L/\mathbb{Q} nach Satz 24.3 eine Galoiserweiterung, weil L der Zerfällungskörper von f ist.

- Die UG von $\operatorname{Gal}(L/\mathbb{Q})$ haben wir bereits in (ii) bestimmt.
- Bestimme die entsprechenden Fixkörper:
 - Offensichtlich gilt $K_1 := Inv(H_1) = L$.
 - Nach Satz 24.3 gilt $K_{10} := \operatorname{Inv}(H_{10}) = \mathbb{Q}$, da L/\mathbb{Q} eine Galoiserweiterung ist.

 $- \underline{\mathsf{Beh.:}} \ K_2 := \mathrm{Inv}(H_2) = \mathbb{Q}(\alpha).$ <u>Bew.:</u> Da $\tau \in H_2$ das Element α fixiert, gilt $\mathbb{Q}(\alpha) \subseteq \operatorname{Inv}(H_2)$. Ferner gilt $|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}] = 8$ nach Lemma 23.5, was

$$[\operatorname{Inv}(H_2):\mathbb{Q}] \stackrel{\mathsf{HGT}}{=} [\operatorname{Gal}(L/\mathbb{Q}):H_2] \stackrel{\mathsf{Lagrange}}{=} \tfrac{8}{2} = 4 = [\mathbb{Q}(\alpha):\mathbb{Q}]$$

impliziert, und somit schließlich $\mathbb{Q}(\sqrt{3}) = \operatorname{Inv}(H_2)$.

Analog zeigt man:

- $-K_3 := \operatorname{Inv}(H_3) = \mathbb{Q}(i + \alpha^2)$
- $-K_4 := \operatorname{Inv}(H_4) = \mathbb{Q}(\alpha i\alpha)$
- $-K_5 := \operatorname{Inv}(H_5) = \mathbb{Q}(i\alpha)$
- $-K_6 := \operatorname{Inv}(H_6) = \mathbb{Q}(\alpha + i\alpha)$
- $-K_7 := \operatorname{Inv}(H_7) = \mathbb{Q}(i)$
- $-K_8 := \operatorname{Inv}(H_8) = \mathbb{Q}(\alpha^2)$
- $-K_9 := \operatorname{Inv}(H_9) = \mathbb{Q}(i\alpha^2)$

 \Diamond

Viel Erfolg bei der Klausurvorbereitung!

