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Learning Problem

Ingredients of a Learning Problem.

· ∅ 6= X — instance space
· Z = X × {0, 1} — sample space
· ∅ 6= H ⊆ {0, 1}X — hypothesis space
· ΣZ — σ–algebra on Z with Pfin(Z) ⊆ ΣZ

· D — set of distributions on (Z,ΣZ)

Assumption.
For any hypothesis h ∈ H we have

Γ(h) := {(x, y) ∈ Z | h(x) = y} ∈ ΣZ .
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Learning from Examples – Basic Procedure

Using an arbitrary distribution D ∈ D, a sequence of iid samples
from Z is generated:

z = ((x1, y1), . . . , (xm, ym)).

These samples provide the input data for a learning function A that
determines a hypothesis h = A(z) in H.

S. SHALEV-SHWARTZ and S. BEN-DAVID, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).

5



Learning from Examples – Goal

The goal is to minimize the (true) error of h given by

erD(h) := D({(x, y) ∈ Z | h(x) 6= y}) = D(Z \ Γ(h)︸ ︷︷ ︸
∈ΣZ

).

More precisely, we want to achieve an error that is close to

optD(H) := inf
h∈H

erD(h).

S. SHALEV-SHWARTZ and S. BEN-DAVID, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).
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PAC Learning

Definition.
A learning function

A :
⋃
m∈N

Zm → H

for H is said to be probably approximately correct (PAC) (with respect
to D) if it satisfies the following condition:

∀ε, δ ∈ (0, 1) ∃m0 ∈ N ∀m ≥ m0 ∀D ∈ D :

Dm({z ∈ Zm | erD(A(z))− optD(H) ≤ ε}) ≥ 1− δ.

L. G. VALIANT, ‘A Theory of the Learnable’, Comm. ACM 27 (1984) 1134–1142.
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PAC Learning – refined

Definition.
A learning function

A :
⋃
m∈N

Zm → H

for H is said to be probably approximately correct (PAC) (with respect
to D) if it satisfies the following condition:

∀ε, δ ∈ (0, 1) ∃m0 ∈ N ∀m ≥ m0 ∀D ∈ D ∃C ∈ Σm
Z :

C ⊆ {z ∈ Zm | erD(A(z))− optD(H) ≤ ε}
and Dm(C) ≥ 1− δ.

The hypothesis space H is said to be PAC learnable if there exists a
learning function for H that is PAC.
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Sample Error

The sample error of h on a multi-sample z = (z1, . . . , zm) ∈ Zm given
by

êrz(h) :=
1
m

m∑
i=1

1Z\Γ(h)(zi)

provides a useful estimate for the true error.

Remark.
The map

Zm →
{ k

m
∣∣ k ∈ {0, 1, . . . ,m}

}
, z 7→ êrz(h)

is Σm
Z–measurable.

S. SHALEV-SHWARTZ and S. BEN-DAVID, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).
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A Simple Learning Principle

The sample error of h on a multi-sample z = (z1, . . . , zm) ∈ Zm given
by

êrz(h) :=
1
m

m∑
i=1

1Z\Γ(h)(zi)

provides a useful estimate for the true error.

Sample Error Minimization (SEM).
Choose a learning function A such that

êrz(A(z)) = min
h∈H

êrz(h)

for any multi-sample z.
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VC Dimension

Definition.
Given A ⊆ X , we say that H shatters A if

{h↾A | h ∈ H} = {0, 1}A.

If H cannot shatter sets of arbitrarily large size, then we say that H
has finite VC dimension.

V. N. VAPNIK and A. JA. ČERVONENKIS, ‘Uniform Convergence of Frequencies of
Occurrence of Events to Their Probabilities’, Dokl. Akad. Nauk SSSR 181 (1968) 781–783
(Russian), Sov. Math., Dokl. 9 (1968) 915–918 (English).
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Fundamental Theorem of Statistical Learning

The following result is due to Blumer, Ehrenfeucht, Haussler and
Warmuth 1989.

Theorem.
Under certain measurability conditions, a hypothesis space H is
PAC learnable with respect to a set D of distributions if and only if its
VC dimension is finite.

A. BLUMER, A. EHRENFEUCHT, D. HAUSSLER and M. K. WARMUTH, ‘Learnability and the
Vapnik-Chervonenkis dimension’, J. Assoc. Comput. Mach. 36 (1989) 929–965.
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Well-Behaved Hypothesis Spaces

Definition.
A hypothesis space H is called well-behaved (with respect to D) if it
satisfies the following conditions:

· Γ(h) ∈ ΣZ for any h ∈ H.
· The map

U : Zm → [0, 1], z 7→ sup
h∈H

∣∣erD(h)− êrz(h)
∣∣

is Σm
Z–measurable for any m ≥ mH and any D ∈ D.

· The map

V : Z2m → [0, 1], (z, z′) 7→ sup
h∈H

∣∣êrz′(h)− êrz(h)
∣∣

is Σ2m
Z –measurable for any m ≥ mH.
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Pathological Hypothesis Spaces

Fundamental Theorem.
Under certain measurability conditions, a hypothesis space H is
PAC learnable with respect to a set D of distributions if and only if its
VC dimension is finite.

Open Question.
Are there a hypothesis space H with finite VC dimension and a set D
of distributions such that H is not PAC learnable with respect to D?

Note: Such a hypothesis space would not be well-behaved.
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Definable Hypothesis Spaces

Definiton.
Let L be a language, let M be an L–structure and let
φ(x1, . . . , xn;p1, . . . ,pℓ) be an L–formula. For any w ∈ Mℓ, set

φ(M,w) = {a ∈ Mn | M |= φ(a;w)}.

Then the hypothesis space Hφ ⊆ {0, 1}Mn is given by

Hφ :=
{
1φ(M;w)

∣∣w ∈ Mℓ
}
.

Further, given a non-empty set X ⊆ Mn that is definable over M, the
hypothesis space Hφ

X ⊆ {0, 1}X is given by

Hφ
X := {h↾X | h ∈ Hφ}.
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NIP and VC Dimension

The following result is due to Laskowski 1992.

Proposition.
Let L be a language and let M be an L–structure. Then the following
conditions are equivalent:

(1) M has NIP.
(2) The hypothesis space Hφ has finite VC dimension for any

L–formula φ(x;p).
(3) The hypothesis space Hφ

X has finite VC dimension for any
L–formula φ(x;p) and any non-empty set X definable over M.

M. C. LASKOWSKI, ‘Vapnik–Chervonenkis classes of definable sets’, J. Lond. Math. Soc.
45 (1992) 377–384.
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Borel σ–Algebra

Given k ∈ N, the Borel σ–algebra B(Rk) of Rk is the smallest
σ–algebra containing all open sets in Rk.
For Y ⊆ Rk, we consider the trace σ–algebra given by

B(Y) := {B ∩ Y | B ∈ B(Rk)}.

Set Lor := {+, ·,−, 0, 1, <} and Ror := (R,+, ·,−, 0, 1, <).

Lemma.
Let L be a language expanding Lor, let R be an o-minimal
L–expansion of Ror, let φ(x1, . . . , xm;p1, . . . ,pℓ) be an L–formula and
let w ∈ Rℓ. Then φ(R;w) ∈ B(Rn).

18



Borel σ–Algebra

Given k ∈ N, the Borel σ–algebra B(Rk) of Rk is the smallest
σ–algebra containing all open sets in Rk.
For Y ⊆ Rk, we consider the trace σ–algebra given by

B(Y) := {B ∩ Y | B ∈ B(Rk)}.

Set Lor := {+, ·,−, 0, 1, <} and Ror := (R,+, ·,−, 0, 1, <).

Lemma.
Let L be a language expanding Lor, let R be an o-minimal
L–expansion of Ror, let φ(x1, . . . , xm;p1, . . . ,pℓ) be an L–formula and
let w ∈ Rℓ. Then φ(R;w) ∈ B(Rn).

M. KARPINSKI and A. MACINTYRE, ‘Approximating Volumes and Integrals in o-Minimal
and p-Minimal Theories’, Connections between model theory and algebraic and
analytic geometry (ed. Macintyre), Quad. Mat. 6 (2000) 149–177.
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Learning over O-minimal Expansions of Ror

Theorem.
Let

· L be a language expanding Lor,
· R be an o-minimal L–expansion of Ror,
· X ⊆ Rn be a non-empty set that is definable over R,
· φ(x1, . . . , xn;p1, . . . ,pℓ) be an L–formula,
· ΣZ be a σ–algebra on Z = X × {0, 1} with B(Z) ⊆ ΣZ , and
· D be a set of distributions on (Z,ΣZ) such that (Zm,Σm

Z ,Dm) is
a complete probability space for any D ∈ D and any m ∈ N.

Then Hφ
X is PAC learnable with respect to D.

M. KARPINSKI and A. MACINTYRE, ‘Approximating Volumes and Integrals in o-Minimal
and p-Minimal Theories’, Connections between model theory and algebraic and
analytic geometry (ed. Macintyre), Quad. Mat. 6 (2000) 149–177.
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Learning over O-minimal Expansions of Ror

Proof Sketch.
· O-minimality implies NIP.
· Thus, Hφ

X has finite VC dimension.
· Aim: Apply Fundamental Theorem.
· To this end: Verify well-behavedness.
· Γ(h) ∈ ΣZ for any h ∈ Hφ

X .
· Technical analysis and application of Pollard’s arguments
regarding measurability of suprema establish measurability of
the maps U and V.

D. POLLARD, Convergence of Stochastic Processes, Springer Ser. Stat. (Springer, New
York, 1984).
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NIP

Notation.
[m] := {1, . . . ,m} for m ∈ N.

Definition.
Let L be a language and let M be an L–structure.
A (partitioned) L–formula φ(x1, . . . , xn;p1, . . . ,pℓ) has NIP over M if
there is m ∈ N such that for any object set {a1, . . . , am} ⊆ Mn and any
parameter set {wI | I ⊆ [m]} ⊆ Mℓ, there is some J ⊆ [m] such that

M 6|=
∧
i∈J

φ(ai;wJ) ∧
∧

i∈[m]\J

¬φ(ai;wJ)︸ ︷︷ ︸
φ(ai;wJ) is true iff i∈J

.

The L–structure M has NIP if every L–formula has NIP over M.

S. SHELAH, ‘Stability, the f.c.p., and superstability; model theoretic properties of
formulas in first order theory’, Ann. Math. Logic 3 (1971) 271–362.
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NIP Formulas and VC Dimension

The following result is due to Laskowski 1992.

Lemma.
Let L be a language, let M be an L–structure and let
φ(x1, . . . , xn;p1, . . . ,pℓ) be an L–formula. Then φ has NIP over M if
and only if the hypothesis space Hφ has finite VC dimension.

M. C. LASKOWSKI, ‘Vapnik–Chervonenkis classes of definable sets’, J. Lond. Math. Soc.
45 (1992) 377–384.



Sufficient Conditions for Well-Behavedness

Remark.
Sufficient conditions for the measurability of the maps U and V :

· X is countable.
· H is countable.
· H is universally separable.

Definition.
The hypothesis space H is called universally separable if there exists
a countable subset H0 ⊆ H such that for any h ∈ H there exists a
sequence {hn}n∈N ⊆ H0 converging pointwise to h.
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