MODEL THEORY

Exercise sheet 1

Structures, formulas, theories, ultrapowers

Throughout the exercise sheet, we fix a first-order language \mathcal{L} over the signature $(K, (f_i)_{i \in I}, (R_j)_{j \in J})$ with corresponding arities $(\alpha_i)_{i \in I}$ and $(\beta_j)_{j \in J}$. We also fix an infinite set X and a free ultrafilter \mathcal{U} on X.

Exercise 1 (4 points)

Show that for any non-empty set M, there is an \mathcal{L} -structure \mathcal{M} with underlying set M.

Exercise 2 (4 points)

Among the following formulas in \mathcal{L} , which are tautologies?

a)
$$\forall v_0 \exists v_1 \neg (v_0 = v_1)$$

b)
$$v_0 = v_0$$

c) $\exists v_0 \forall v_1 \exists v_2 (f_i(v_0, v_1) = f_i(v_0, v_2))$ (assuming that $\alpha_i = 2$)

d)
$$\exists v_0 R_j(v_0, c)$$
.

(assuming that
$$\beta_j = 2$$
)

Exercise 3

(4 points)

Let $\mathcal{M} = (M, ...)$ be an \mathcal{L} -structure where M is finite. Show that the natural embedding $\mathcal{M} \longrightarrow \prod_{\mathcal{U}} \mathcal{M}$ is surjective.

Exercise 4

(4 points)

Let T be a first-order theory over \mathcal{L} and assume that for each $n \in \mathbb{N}$, there is a model of T with cardinality $\geq n$. Show that T has an infinite model.

Exercise 5

(4 points)

For each function $f: \mathbb{R} \longrightarrow \mathbb{R}$, we let $\mathcal{R}_f = (R_f, ...)$ denote the ultrapower of $\mathbb{R}_f = (\mathbb{R}, +, \cdot, 0, 1, <, f)$ in the first order language $\langle +, \cdot, 0, 1, <, F \rangle$ where F is a function symbol of arity 1. We write f^* for the interpretation of F in \mathcal{R}_f , i.e.

$$f^*([u]_{\mathcal{U}}) = [f \circ u]_{\mathcal{U}}$$

for all $u: X \longrightarrow \mathbb{R}$. We see \mathbb{R} as a subset of R_f according to the natural inclusion.

- a) We say that an element $\varepsilon \in R_f$ is infinitesimal if $n \max(\varepsilon, -\varepsilon) < 1$ for all $n \in \mathbb{N}$. Show that there are infinitesimal elements in R_f .
- b) Show that f is continuous if and only if for each $r \in \mathbb{R}$ and each infinitesimal $\varepsilon \in R_f$, the quantity $f^*(r + \varepsilon) f^*(r)$ is infinitesimal.

Please hand in your solutions by Friday, 28 April 2023, 10:00 (postbox 14 in F4).