Model Theory

Exercise sheet 1

Structures, formulas, theories, ultrapowers

Throughout the exercise sheet, we fix a first-order language \mathcal{L} over the signature $\left(K,\left(f_{i}\right)_{i \in I}\right.$, $\left.\left(R_{j}\right)_{j \in J}\right)$ with corresponding arities $\left(\alpha_{i}\right)_{i \in I}$ and $\left(\beta_{j}\right)_{j \in J}$. We also fix an infinite set X and a free ultrafilter \mathcal{U} on X.

Exercise 1

(4 points)
Show that for any non-empty set M, there is an \mathcal{L}-structure \mathcal{M} with underlying set M.

Exercise 2

(4 points)
Among the following formulas in \mathcal{L}, which are tautologies?
a) $\forall v_{0} \exists v_{1} \neg\left(v_{0}=v_{1}\right)$
b) $v_{0}=v_{0}$
c) $\exists v_{0} \forall v_{1} \exists v_{2}\left(f_{i}\left(v_{0}, v_{1}\right)=f_{i}\left(v_{0}, v_{2}\right)\right)$
(assuming that $\alpha_{i}=2$)
d) $\exists v_{0} R_{j}\left(v_{0}, c\right)$.
(assuming that $\beta_{j}=2$)

Exercise 3

(4 points)
Let $\mathcal{M}=(M, \ldots)$ be an \mathcal{L}-structure where M is finite. Show that the natural embedding $\mathcal{M} \longrightarrow$ $\prod_{\mathcal{U}} \mathcal{M}$ is surjective.

Exercise 4

(4 points)

Let T be a first-order theory over \mathcal{L} and assume that for each $n \in \mathbb{N}$, there is a model of T with cardinality $\geqslant n$. Show that T has an infinite model.

Exercise 5

(4 points)
For each function $f: \mathbb{R} \longrightarrow \mathbb{R}$, we let $\mathcal{R}_{f}=\left(R_{f}, \ldots\right)$ denote the ultrapower of $\mathbb{R}_{f}=(\mathbb{R},+, \cdot, 0,1,<$, f) in the first order language $\langle+, \cdot, 0,1,\langle, F\rangle$ where F is a function symbol of arity 1 . We write f^{*} for the interpretation of F in \mathcal{R}_{f}, i.e.

$$
f^{*}\left([u]_{\mathcal{U}}\right)=[f \circ u]_{\mathcal{U}}
$$

for all $u: X \longrightarrow \mathbb{R}$. We see \mathbb{R} as a subset of R_{f} according to the natural inclusion.
a) We say that an element $\varepsilon \in R_{f}$ is infinitesimal if $n \max (\varepsilon,-\varepsilon)<1$ for all $n \in \mathbb{N}$. Show that there are infinitesimal elements in R_{f}.
b) Show that f is continuous if and only if for each $r \in \mathbb{R}$ and each infinitesimal $\varepsilon \in R_{f}$, the quantity $f^{*}(r+\varepsilon)-f^{*}(r)$ is infinitesimal.

Please hand in your solutions by Friday, 28 April 2023, 10:00 (postbox 14 in F4).

