MODEL THEORY

Exercise sheet 2

Ultrapowers, compactness

Throughout the exercise sheet, we fix a first-order language \mathcal{L} over the signature $(K, (f_i)_{i \in I}, (R_j)_{j \in J})$ with corresponding arities $(\alpha_i)_{i \in I}$ and $(\beta_j)_{j \in J}$. We also fix an infinite set X and a free ultrafilter \mathcal{U} on X.

Exercise 4

(4 points)

Let $\mathcal{M} = (M, ...)$ be an \mathcal{L} -structure where M is finite. Show that the natural embedding $\mathcal{M} \longrightarrow \prod_{\mathcal{U}} \mathcal{M}$ is surjective.

Exercise 5

(6 points)

An oriented graph is an ordered pair (V, E) where V is a non-empty set called the set of vertices and and $E \subseteq V \times V$ is the set of edges. We work in the first-order language $\mathcal{L}_1 := \langle \rightarrow \rangle$ where \rightarrow is a binary relation symbol. So a graph is simply an \mathcal{L}_1 -structure.

- a) A loop in a graph (V, E) is an edge $e \in E$ of the form e = (v, v) for some $v \in V$. Is there a first-order theory in \mathcal{L}_1 of graphs without loop?
- b) A graph is said connected if for all $v, v' \in V$, there are an n > 0 and $v_1, ..., v_n \in V$ with $(v_i, v_{i+1}) \in E$ for each $1 \leq i \leq n-1$ and $(v_1, v_n) = (v, v')$. Is there a first-order theory in \mathcal{L}_1 of connected graphs?

Exercise 6

(6 points)

For each function $f: \mathbb{R} \longrightarrow \mathbb{R}$, we let $\mathcal{R}_f = (R_f, ...)$ denote the ultrapower of $\mathbb{R}_f = (\mathbb{R}, +, \cdot, 0, 1, <, f)$ in the first order language $\langle +, \cdot, 0, 1, <, F \rangle$ where F is a function symbol of arity 1. We write f^* for the interpretation of F in \mathcal{R}_f , i.e.

$$f^*([u]_{\mathcal{U}}) = [f \circ u]_{\mathcal{U}}$$

for all $u: X \longrightarrow \mathbb{R}$. We see \mathbb{R} as a subset of R_f according to the natural inclusion.

- a) We say that an element $\varepsilon \in R_f$ is infinitesimal if $n \max(\varepsilon, -\varepsilon) < 1$ for all $n \in \mathbb{N}$. Show that there are infinitesimal elements in R_f .
- b) Show that f is continuous if and only if for each $r \in \mathbb{R}$ each infinitesimal $\varepsilon \in R_f$, the quantity $f^*(r + \varepsilon) f^*(r)$ is infinitesimal.

Please hand in your solutions by Thursday, 11 May 2023, 10:00 (postbox 14 in F4).