Model Theory

Exercise sheet 2
Ultrapowers, compactness

Throughout the exercise sheet, we fix a first-order language \mathcal{L} over the signature $\left(K,\left(f_{i}\right)_{i \in I}\right.$, $\left.\left(R_{j}\right)_{j \in J}\right)$ with corresponding arities $\left(\alpha_{i}\right)_{i \in I}$ and $\left(\beta_{j}\right)_{j \in J}$. We also fix an infinite set X and a free ultrafilter \mathcal{U} on X.

Exercise 4

(4 points)
Let $\mathcal{M}=(M, \ldots)$ be an \mathcal{L}-structure where M is finite. Show that the natural embedding $\mathcal{M} \longrightarrow$ $\prod_{\mathcal{U}} \mathcal{M}$ is surjective.

Exercise 5

(6 points)
An oriented graph is an ordered pair (V, E) where V is a non-empty set called the set of vertices and and $E \subseteq V \times V$ is the set of edges. We work in the first-order language $\mathcal{L}_{1}:=\langle\rightarrow\rangle$ where \rightarrow is a binary relation symbol. So a graph is simply an \mathcal{L}_{1}-structure.
a) A loop in a graph (V, E) is an edge $e \in E$ of the form $e=(v, v)$ for some $v \in V$. Is there a first-order theory in \mathcal{L}_{1} of graphs without loop?
b) A graph is said connected if for all $v, v^{\prime} \in V$, there are an $n>0$ and $v_{1}, \ldots, v_{n} \in V$ with $\left(v_{i}\right.$, $\left.v_{i+1}\right) \in E$ for each $1 \leqslant i \leqslant n-1$ and $\left(v_{1}, v_{n}\right)=\left(v, v^{\prime}\right)$. Is there a first-order theory in \mathcal{L}_{1} of connected graphs?

Exercise 6

(6 points)

For each function $f: \mathbb{R} \longrightarrow \mathbb{R}$, we let $\mathcal{R}_{f}=\left(R_{f}, \ldots\right)$ denote the ultrapower of $\mathbb{R}_{f}=(\mathbb{R},+, \cdot, 0,1,<$, f) in the first order language $\langle+, \cdot, 0,1,<, F\rangle$ where F is a function symbol of arity 1 . We write f^{*} for the interpretation of F in \mathcal{R}_{f}, i.e.

$$
f^{*}\left([u]_{\mathcal{U}}\right)=[f \circ u]_{\mathcal{U}}
$$

for all $u: X \longrightarrow \mathbb{R}$. We see \mathbb{R} as a subset of R_{f} according to the natural inclusion.
a) We say that an element $\varepsilon \in R_{f}$ is infinitesimal if $n \max (\varepsilon,-\varepsilon)<1$ for all $n \in \mathbb{N}$. Show that there are infinitesimal elements in R_{f}.
b) Show that f is continuous if and only if for each $r \in \mathbb{R}$ each infinitesimal $\varepsilon \in R_{f}$, the quantity $f^{*}(r+\varepsilon)-f^{*}(r)$ is infinitesimal.

Please hand in your solutions by Thursday, 11 May 2023, 10:00 (postbox 14 in F4).

