MODEL THEORY

Exercise sheet 3

Categoricity, types, saturation.

Throughout the exercise sheet, we fix a first-order language \mathcal{L} over the signature $(K, (f_i)_{i \in I}, (R_j)_{j \in J})$ with corresponding arities $(\alpha_i)_{i \in I}$ and $(\beta_j)_{j \in J}$.

Exercise 7

(4 points)

Let T be a theory in \mathcal{L} . Assume that $|\mathcal{L}| = \aleph_0$ and that there is an infinite cardinal κ such that all models of T of cardinality κ are isomorphic. Show that T is complete.

Exercise 8

(6+2 points)

- a) Show that there is a first-order theory T in the language $\langle +, 0 \rangle$ of groups whose models are exactly non-trivial, divisible abelian groups without torsion.
- b) Show that there is a first-order theory T_{\leq} in the language $\langle +, 0, < \rangle$ of ordered groups whose models are exactly non-tirivial, divisible, (totally) ordered abelian groups without torsion.
- c) Show that all models of T of same cardinality are isomorphic. Deduce that T is complete.
- d) (bonus) Show that there are two models of $T_{<}$ of same cardinality which are not isomorphic.

Exercise 9

(4 points)

Give an example of a complete first-order theory T in a language \mathcal{L}_0 of your choice such that there is an \mathcal{L}_0 -structure $\mathcal{M} = (M, ...)$ and a sequence $(\mathcal{M}_n)_{n \in \mathbb{N}}$ of subtructures $\mathcal{M}_n = (M_n, ...)$ of \mathcal{M} such that we have $M_n \subseteq M_{n+1}$ and $\mathcal{M}_n \models T$ for all $n \in \mathbb{N}$, as well as $M = \bigcup_{n \in \mathbb{N}} M_n$, but

```
\mathcal{M} \nvDash T.
```

Exercise 10 (6 points)

Let $\mathcal{M} = (M, ...)$ be an \mathcal{L} -structure and let $A \subseteq M$ be a subset. An *n*-type $p(v_0, ..., v_{n-1})$ of \mathcal{M} over A is said **complete** if for all formulas $\varphi \in \mathcal{L}_A$ with $FV(\varphi) \subseteq \{v_0, ..., v_n\}$, we have $\varphi \in p(v_0, ..., v_{n-1})$ or $\neg \varphi \in p(v_0, ..., v_{n-1})$.

- a) Show that an *n*-type of \mathcal{M} over A is complete if and only if it is properpy contained in no *n*-type of \mathcal{M} over A.
- b) Show that every *n*-type of \mathcal{M} over A is contained in a complete *n*-type.

c) Show that for $\overline{m} = (m_0, ..., m_n) \in M^n$, the set

$$\operatorname{tp}_{A}(\overline{m}) := \{\varphi \in \mathcal{L}_{A} : \operatorname{FV}(\varphi) \subseteq \{v_{0}, ..., v_{n}\} \land \mathcal{M} \vDash_{\binom{v_{0}}{m_{0}} \cdots \binom{v_{n}}{m_{n}}} \varphi\}$$

is a complete n-type.

Exercise 11 (bonus) (6 points)

Let $\mathcal{M} = (M, ...)$ be an \mathcal{L} -structure and let κ be an infinite cardinal. Assume that for every subset $A \subseteq M$ with $|A| < \kappa$, each 1-type $p(v_0)$ over A is realised in \mathcal{M} . Show that \mathcal{M} is κ -saturated.

Hint: proceed by induction on the length n *of a type* $q(v_0, ..., v_{n-1})$ *.*

Please hand in your solutions by Thursday, 22 May 2023, 10:00 (postbox 14 in F4).