Fachbereich Mathematik und Statistik Dr. Vincent Bagayoko Prof. Dr. Salma Kuhlmann SoSe 2023

Model Theory

Exercise sheet 4

Types and definability

Throughout the exercise sheet, we fix a first-order language \mathcal{L} over the signature $(K, (f_i)_{i \in I}, (R_j)_{j \in J})$ with corresponding arities $(\alpha_i)_{i \in I}$ and $(\beta_j)_{j \in J}$.

Exercise 12 (6 points)

Let $\mathcal{N} = (\mathbb{N}_0, +, \cdot, 0, 1, <)$ be the ordered semi-ring of non-negative integers. Let $p \in \mathbb{N}$ be a fixed prime number. Show that the following sets are definable with parameters in \mathcal{N} :

- a) The set of squares of non-negative integers.
- b) The set of prime numbers.
- c) The set $\{p^m : m \in \mathbb{N}_0\}$ of powers of p.

Exercise 13 (8 points)

Consider the structure \mathcal{N} of Exercise 12. Let $\mathcal{N}^* = (N^*, ...)$ be a proper elementary extension of \mathcal{N} .

- a) Show that every non-empty definable subset of N^* in \mathcal{N} has a minimum. Show that there is a non-empty subset of N^* without a minimum.
- b) Show that every infinite definable subset of N^* in \mathcal{N}^* contains an element n^* with $n^* > n$ for all $n \in \mathbb{N}$.
- c) Show that the 1-type of \mathcal{N}

$$p(v_0) := \{1 + \dots + 1 < v_0 : n \in \mathbb{N}\}$$

n times

is contained in two distinct complete 1-types of \mathcal{N} over \emptyset .

Exercise 14: (9+3 points)

Let $\mathcal{M} = (M, ...)$ be an \mathcal{L} -structure and let $A \subseteq M$ be a subset. We say that \mathcal{M} has definable choice over A if for all formulas φ with free variables among $v_0, ..., v_n$ and parameters in A, there is a partial function $f: M^n \longrightarrow M$ which is definable over A and such that

$$\mathcal{M} \vDash \varphi(m_0, \ldots, m_{n-1}, f(m_0, \ldots, m_{n-1}))$$

for all $m_0, \ldots, m_{n-1} \in M$ such that $\mathcal{M} \vDash_{(v_i \mapsto m_i)} \exists v_n \varphi(v_0, \ldots, v_{n-1}, v_n)$.

- a) Let \mathcal{M} have definable choice over A and let $\mathcal{N} = (N, ...)$ be an elementary extension of \mathcal{M} . Show that \mathcal{N} has definable choice over A (seen as its image in N).
- b) Assume that $\mathcal{M} = (M, +, <, ...)$ where (M, +, <) is an Abelian, divisible, totally ordered ordered group, and that \mathcal{M} is o-minimal. Show that \mathcal{M} has definable choice over M.
- c) Assume that $\mathcal{N} = (\mathbb{N}, ...)$ is an \mathcal{L} -structure such that the natural ordering < on \mathbb{N} is definable. Show that \mathcal{N} has definable choice over \mathbb{N} .
- d) (bonus) Let $\mathcal{K} = (K, +, \cdot, 0, 1, ...)$ be a strongly minimal structure where $(K, +, \cdot, 0, 1)$ is an infinite field. Show that \mathcal{K} does not have definable choice over K.

Please hand in your solutions by Thursday, 6 July 2023, 10:00 (postbox 14 in F4).