Model Theory

Exercise sheet 5

Quantifier elimination

Exercise 15 (6 points)

Let $\mathcal{L} = \langle f \rangle$ where f is a function symbol of arity 1. Let T be the theory in \mathcal{L} containing the following axioms:

A1. $\forall v_0 \exists v_1 (f(v_1) = v_0).$

A2. $\forall v_0 \forall v_1 ((f(v_0) = f(v_1)) \longrightarrow (v_0 = v_1)).$

a) Show that T is consistent and determine its models.

b) Is T complete?

c) Does T have quantifier elimination in \mathcal{L} ?

Exercise 16 (6 points)

Let $T_{\rm ac}$ be a theory in the language $\mathcal{L}_r = \langle +, -, \cdot, 0, 1 \rangle$ of rings whose models are exactly algebraically closed fields. Let $k \models T_{\rm ac}$. Let $n \in \mathbb{N}$ and let $I \subseteq k[X_1, \ldots, X_n]$ be a prime ideal. Show (using model theoretic arguments!) that there is an $\overline{a} \in k^n$ such that $Q(\overline{a}) = 0$ for all $Q \in I$.

Exercise 17 (10 points)

Let $T_{\rm rc}$ be a theory in the language $\mathcal{L}_{\rm or} = \langle +, -, \cdot, 0, 1, < \rangle$ of ordered rings whose models are ordered fields in which monic irreducible polynomials of degree >1 are of the form $X^2 + b X + c$ where $b^2 - 4c < 0$.

- a) Justify that T is consistent.
- b) Show that T has quantifier elimination in \mathcal{L}_{or} .
- c) Show that T is o-minimal.
- d) Does T have quantifier elimination in \mathcal{L}_r ?

Exercise 18 (bonus) (8 points) Let T_0 be a theory in \mathcal{L}_r whose models are exactly algebraically closed fields of characteristic 0. Consider a free ultrafilter \mathcal{U} on the set \mathbb{P} of prime natural numbers, and the corresponding ultrapower $\mathcal{F} = \prod_{\mathcal{U}} (\widetilde{\mathbb{F}}_p)_{p \in \mathbb{P}}$ where each $\widetilde{\mathbb{F}}_p$ is an algebraic closure of \mathbb{F}_p seen as an \mathcal{L}_r -structure.

- a) Show that \mathcal{F} is a model of T_0 .
- b) Assume for contradiction that there are a $\mathcal{C} = (C, ...) \vDash T_0$, an $n \in \mathbb{N}$ and a polynomial function¹ $C^n \longrightarrow C^n$ which is injective but not surjective.
 - i. Show that there are a $p \in \mathbb{P}$ and a polynomial function $(\widetilde{\mathbb{F}_p})^n \longrightarrow (\widetilde{\mathbb{F}_p})^n$ which is injective but not surjective.
 - ii. Show that there are a $k \in \mathbb{N}$ and a polynomial function $\mathbb{F}_{p^k}^n \longrightarrow \mathbb{F}_{p^k}^n$ which is injective but not surjective.
 - iii. Conclude.

Please hand in your solutions by Thursday, 20 July 2023, 10:00 (postbox 14 in F4).

^{1.} i.e. a function of the form $(a_1, \ldots, a_n) \longmapsto (P_1(a_1, \ldots, a_n), \ldots, P_n(a_1, \ldots, a_n))$ where $P_1, \ldots, P_n \in C[X_1, \ldots, X_n]$.