## Model Theory

Exercise sheet 5
Quantifier elimination

## Exercise 15

## (6 points)

Let $\mathcal{L}=\langle f\rangle$ where $f$ is a function symbol of arity 1 . Let $T$ be the theory in $\mathcal{L}$ containing the following axioms:

A1. $\forall v_{0} \exists v_{1}\left(f\left(v_{1}\right)=v_{0}\right)$.
A2. $\forall v_{0} \forall v_{1}\left(\left(f\left(v_{0}\right)=f\left(v_{1}\right)\right) \longrightarrow\left(v_{0}=v_{1}\right)\right)$.
a) Show that $T$ is consistent and determine its models.
b) Is $T$ complete?
c) Does $T$ have quantifier elimination in $\mathcal{L}$ ?

## Exercise 16

(6 points)
Let $T_{\mathrm{ac}}$ be a theory in the language $\mathcal{L}_{r}=\langle+,-, \cdot, 0,1\rangle$ of rings whose models are exactly algebraically closed fields. Let $k \vDash T_{\text {ac }}$. Let $n \in \mathbb{N}$ and let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be a prime ideal. Show (using model theoretic arguments!) that there is an $\bar{a} \in k^{n}$ such that $Q(\bar{a})=0$ for all $Q \in I$.

## Exercise 17

## (10 points)

Let $T_{\mathrm{rc}}$ be a theory in the language $\mathcal{L}_{\text {or }}=\langle+,-, \cdot, 0,1,<\rangle$ of ordered rings whose models are ordered fields in which monic irreducible polynomials of degree $>1$ are of the form $X^{2}+b X+c$ where $b^{2}-4 c<0$.
a) Justify that $T$ is consistent.
b) Show that $T$ has quantifier elimination in $\mathcal{L}_{\text {or }}$.
c) Show that $T$ is o-minimal.
d) Does $T$ have quantifier elimination in $\mathcal{L}_{r}$ ?

## Exercise 18 (bonus) <br> (8 points)

Let $T_{0}$ be a theory in $\mathcal{L}_{r}$ whose models are exactly algebraically closed fields of characteristic 0 .
Consider a free ultrafilter $\mathcal{U}$ on the set $\mathbb{P}$ of prime natural numbers, and the corresponding ultrapower $\mathcal{F}=\prod_{\mathcal{U}}\left(\widetilde{\mathbb{F}}_{p}\right)_{p \in \mathbb{P}}$ where each $\widetilde{\mathbb{F}}_{p}$ is an algebraic closure of $\mathbb{F}_{p}$ seen as an $\mathcal{L}_{r}$-structure.
a) Show that $\mathcal{F}$ is a model of $T_{0}$.
b) Assume for contradiction that there are a $\mathcal{C}=(C, \ldots) \vDash T_{0}$, an $n \in \mathbb{N}$ and a polynomial function ${ }^{1} C^{n} \longrightarrow C^{n}$ which is injective but not surjective.
i. Show that there are a $p \in \mathbb{P}$ and a polynomial function $\left(\widetilde{\mathbb{F}_{p}}\right)^{n} \longrightarrow\left(\widetilde{\mathbb{F}_{p}}\right)^{n}$ which is injective but not surjective.
ii. Show that there are a $k \in \mathbb{N}$ and a polynomial function $\mathbb{F}_{p^{k}}^{n} \longrightarrow \mathbb{F}_{p^{k}}^{n}$ which is injective but not surjective.
iii. Conclude.

Please hand in your solutions by Thursday, 20 July 2023, 10:00 (postbox 14 in F4).

[^0]
[^0]:    1. i.e. a function of the form $\left(a_{1}, \ldots, a_{n}\right) \longmapsto\left(P_{1}\left(a_{1}, \ldots, a_{n}\right), \ldots, P_{n}\left(a_{1}, \ldots, a_{n}\right)\right)$ where $P_{1}, \ldots, P_{n} \in C\left[X_{1}, \ldots, X_{n}\right]$.
