REAL ALGEBRAIC GEOMETRY II

Exercise Sheet 1

Valued modules and linear orders

Let Z be a commutative ring with 1. All modules we consider are commutative Z-modules.

Exercise 1

(4 points)

Let (A, \leq_A) be a countable dense linear order without endpoints. Let (B, \leq_B) be an arbitrary countable linear order. Show that (B, \leq_B) is isomorphic to a subordering of (A, \leq_A) .

In particular, every countable ordinal embeds into (\mathbb{Q}, \leq) .

Exercise 2

(4 points)

Let $v: Z[x] \longrightarrow \mathbb{N}_0 \cup \{\infty\}$ be given by $v(0) = \infty$ and $v(p) = \min\{k \in \mathbb{N}_0 : a_k \neq 0\}$ for each $p = \sum_{k=0}^n a_k x^k$ in $Z[x] \setminus \{0\}$.

- a) Suppose that $Z = \mathbb{Z}$.
 - (i). Show that (Z[x], v) is a valued module.
 - (ii). Determine the skeleton of (Z[x], v). Hence, or otherwise, find a sum $\bigsqcup_{\gamma \in \Gamma} B(\gamma)$ such that

$$(Z[x], v) \simeq (\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min}).$$

b) Does (i) also hold when Z is an arbitrary commutative ring with 1? Justify your answer.

Exercise 3

(4 points)

Let (M_1, v_1) and (M_2, v_2) be two valued modules with value sets $\Gamma_1 = v_1(M_1 \setminus \{0\})$ and $\Gamma_2 = v_2(M_2 \setminus \{0\})$. Moreover, let $h: M_1 \longrightarrow M_2$ be an isomorphism of Z-modules which preserves the valuation.

- (i). Let $\tilde{h}: \Gamma_1 \longrightarrow \Gamma_2$, $v_1(x) \mapsto v_2(h(x))$. Show that \tilde{h} is well-defined and an isomorphism of ordered sets, i.e. an order-preserving bijection from Γ_1 to Γ_2 .
- (ii). Show that for each $\gamma \in \Gamma_1$, the map h_{γ} given by

$$B(M_1, \gamma) \longrightarrow B(M_2, \tilde{h}(\gamma)), \ \pi^{M_1}(\gamma, x) \mapsto \pi^{M_2}(\tilde{h}(\gamma), h(x))$$

is an isomorphism of Z-modules.

Exercise 4

(4 points)

Let $[\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$ be an ordered system of torsion-free modules.

- (i). Show that $\mathbf{H}_{\gamma \in \Gamma} B(\gamma)$ is a module and that $\bigsqcup_{\gamma \in \Gamma} B(\gamma)$ is a submodule of $\mathbf{H}_{\gamma \in \Gamma} B(\gamma)$.
- (ii). Show that $S(\bigsqcup_{\gamma \in \Gamma} B(\gamma)) \simeq [\Gamma, \{B(\gamma) : \gamma \in \Gamma\}] \simeq S(\mathbf{H}_{\gamma \in \Gamma} B(\gamma)).$

Exercise 5 (bonus)

(4 points)

Let (A, \leq) be a linear order. Suppose that there exists a countable subset $B \subseteq A$ such that B is dense in (A, \leq) , i.e. for any $a, a' \in A$ with a < a', there exists a $b \in B$ with $a \leq b \leq a'$. Let $C \subseteq A$ be a subset which is well-ordered by \leq . Show that C is countable.

In particular, any well-ordered subset of (\mathbb{R}, \leq) is countable.

Please hand in your solutions by Thursday, 27 April 2023, 10:00 (postbox 14 in F4).