REAL ALGEBRAIC GEOMETRY II

Exercise Sheet 10

Convex valuations and the Baer-Krull theorem

Exercise 32 (6 points)

Let $G = (\mathbb{Q}^{>0}, \cdot, <)$ be the ordered multiplicative group of positive rational numbers. What is the cardinality of the set of orderings on $\mathbb{Q}((G))$ that are v_{\min} -compatible?

Solution. There is exactly one ordering on \mathbb{Q} , so by the Baer-Krull theorem, the set of v_{\min} compatible orderings on $\mathbb{Q}((G))$ is in bijection with $\{-1,1\}^{\dim_{\mathbb{F}_2}(G/2G)}$.

The fundamental theorem of arithmetic tells us that every natural number n has a unique decomposition

$$n = \prod_{p \in \mathbb{P}} p^{n_p}$$

where \mathbb{P} is the set of primes and $(n_p)_{p \in \mathbb{P}} \in \mathbb{N}_0^{\mathbb{P}}$ is a family with finite support. Therefore any strictly positive rational number $q = \frac{m}{n}, m, n \in \mathbb{N}$ has a unique decomposition

$$q = \prod_{p \in \mathbb{P}} p^{q_p}$$

where $(q_p)_{p \in \mathbb{P}} = (m_p - n_p)_{p \in \mathbb{P}}$ is a family of integers with finite support. In other words, writing π for the order preserving bijection $\mathbb{N}_0 \longrightarrow \mathbb{P}$, the group G is isomorphic as a group to the additive group of polynomials with integer coefficients $\mathbb{Z}[X]$, via the map

$$\mathbb{Q}^{>0} \longrightarrow \mathbb{Z}[X]; q \mapsto \sum_{n \in \mathbb{N}_0} q_{\pi_n} X^n.$$

We have $2G \simeq 2\mathbb{Z}[X] = (2\mathbb{Z})[X]$ and

$$G/2 G \simeq (\mathbb{Z}[X]/(2\mathbb{Z})[X]) \simeq \mathbb{F}_2[X].$$

It follows that $\dim_{\mathbb{F}_2}(G/2G) = \aleph_0$, so there are eaxctly 2^{\aleph_0} orderings on $\mathbb{G}((G))$.

Exercise 33 (4 points)

Let (K, \leq) be an ordered field with natural valuation v. Show that there is an ordered field extension L/K with exactly two v-compatible orderings for the natural valuation w on L.

Solution. Let G be the ordered divisible closure of vK^{\times} and let k be the real closure of Kv. Recall that the real closure R of K as value group G and residue field k under natural valuation. We have an embedding $R \longrightarrow k((G))$ by Kaplansky's theorem. Let $G \times \mathbb{Z}$ be lexicographically ordered with respect to the usual ordering on \mathbb{Z} . Let $L = k((G \times \mathbb{Z}))$. We have inclusions $k((G)) \longrightarrow L$ and $K \longrightarrow R$, so L is an ordered field extension of K.

Since G is 2-divisible, we have $2(G \times \mathbb{Z}) = G \times (2\mathbb{Z})$ and $(G \times \mathbb{Z})/2(G \times \mathbb{Z}) \simeq \mathbb{F}_2$, so $\dim_{\mathbb{F}_2}((G \times \mathbb{Z})/2(G \times \mathbb{Z})) = 1$, so by the Baer-Krull theorem, since there is a unique ordering on k, there are exactly $|\{-1,1\}^1| = 2$ w-compatible orderings on L for the natural valuation w on L.

Exercise 34 [Exercise A, Rag II Final sheet, 2019] (4 points)

Let (L, w)/(K, v) be an immediate extension of valued fields. Show that any v-compatible ordering on K extends into a w-compatible ordering on L.

Solution. Let I_K (resp. I_L) be the index set of a basis of $(vK^{\times})/2(vK^{\times})$ (resp. $(wL^{\times})/2(wL^{\times})$) and let $(\pi_i)_{i \in I_K}$ (resp. $(\pi_i)_{i \in I_L}$) be corresponding choices of representatives. So we have Baer-Krull correspondences

$$\begin{split} f_{K} &: \{-1,1\}^{I_{K}} \times \mathcal{X}(Kv) \longrightarrow \mathcal{X}_{v}(K) \\ f_{L} &: \{-1,1\}^{I_{L}} \times \mathcal{X}(Lw) \longrightarrow \mathcal{X}_{w}(L) \end{split}$$

where $\mathcal{X}_*(\cdot)$ denotes the set of *-compatible positive cones on \cdot . Now since (L, w)/(K, v) is immediate, we have Kv = Lw and $vK^{\times} = wL^{\times}$, so we can also choose I_K, I_L and $(\pi_i)_{i \in I_K}$ and respectively $(\pi_i)_{i \in I_L}$ to be identical. Let $P \in \mathcal{X}_v(K)$, and let $(\eta, \overline{P}) \in \{-1, 1\}^{I_K} \times \mathcal{X}(Kv)$ with $P = f_K(\eta, \overline{P})$. Write $\tilde{P} := f_L(\eta, \overline{P}) \in \mathcal{X}_w(L)$. For $a \in K \subseteq L$, the signs of a in L or in K are determined by η and \overline{P} , so they coincide. In particular, we have $P \subseteq \tilde{P}$, i.e. \tilde{P} extends P.

Exercise 35 (bonus) (6 points)

Let (Γ, \leq) be a linearly ordered set. Show that there is an ordered field whose principal rank is the oder type of (Γ, \leq) and which embeds into any ordered field with that principal rank.

Solution. Let $G = \bigsqcup_{\gamma \in \Gamma} \mathbb{Z}$ with its lexicographic ordering < with respect to (Γ, \leq) and $(\mathbb{Z}, <)$, and corresponding natural valuation v_G . The principal rank of (G, +, <) is the order type of $v_G(G \setminus \{0\}) = (\Gamma, \leq)$. For $\gamma \in \Gamma$, we write $\mathbb{1}_{\gamma}$ for the element of G with $\mathbb{1}_{\gamma}(\gamma) = 1$ and $\mathbb{1}_{\gamma}(\eta) = 0$ if $\eta \in \Gamma \setminus \{\gamma\}$.

Let $\mathbb{K} = \mathbb{Q}((G))$ be the corresponding Hahn field with its ordering and natural valuation v. Define K to be the subfield $\mathbb{Q}((t^{1\gamma})_{\gamma \in \Gamma})$ of \mathbb{K} generated by $\{t^{1\gamma} : \gamma \in \Gamma\}$. Its principal rank is the principal rank of $v(K^{\times}) \subseteq G$. Now $v(K^{\times}) \supseteq \{v(\prod_{\gamma \in \text{supp } g} (t^{1\gamma})^{g(\gamma)}) : g \in G\} = G$, so $v(K^{\times}) = G$ and the principal rank of K is the order type of (Γ, \leq) .

Let F be an ordered field whose principal rank is the order type of (Γ, \leq) . Write v_F for the natural valuation on F and w for the natural valuation on the value group $v_F F$. So we can pick a representative $x_{\gamma} \in P_F$ for each $\gamma \in \Gamma$, with $w \circ v_F \colon \{x_{\gamma} \colon \gamma \in \Gamma\} \longrightarrow \Gamma$ is an order-preserving bijection. Write $F_0 := \mathbb{Q}((x_{\gamma})_{\gamma \in \Gamma})$. Note that F_0 is the field of fractions of the vector \mathbb{Q} -space $\mathbb{Q}[(x_{\gamma})_{\gamma \in \Gamma}]$ generated by all elements

$$x^g\!:=\!\prod_{\gamma\in\Gamma}\,x_\gamma^{g(\gamma)}$$

for $g \in G$, so $v_F(x^g) = \sum_{\gamma \in \Gamma} g(\gamma) v_F(x_\gamma)$ for the natural valuation v_F in F. Since the elements $w(v_F(x_\gamma)), \gamma \in \Gamma$ are pairwise distinct and w is a valuation on $v_F F$, the sign of $v_F(x^g)$ is the least $\gamma \in \Gamma$ with $g(\gamma) \neq 0$, i.e. the sign of g in G. It follows since v is a convex valuation that the sign of a finite sum $Q = \sum_{q \in G} q_g x^g \in \mathbb{Q}[(x_\gamma)_{\gamma \in \Gamma}]$ is the sign of q_{g_0} where $g_0 = \min \{g \in G : q_g \neq 0\}$.

In particular, the family $(x_{\gamma})_{\gamma \in \Gamma}$ is algebraically independent over \mathbb{Q} , so there is a unique field isomorphism $K \longrightarrow F_0$ which sends each $t^{\mathbb{1}_{\gamma}}$ to x_{γ} for each $\gamma \in \Gamma$. Applying the previous argument to K instead of F for the choice of representatives $(t^{\mathbb{1}_{\gamma}})_{\gamma \in \Gamma}$, we see that this isomorphism sends the positive cone of K into that of F, so it is an embedding or ordered fields.

Please hand in your solutions by Thursday, 6 July 2023, 10:00 (postbox 14 in F4).