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REAL ALGEBRAIC GEOMETRY II

Exercise Sheet 12 (Final)

Convex valuations, Hardy fields and exponential fields

Exercise 36

Let (L, <) be an ordered field and let K C L be a dense subfield, i.e. a subfield such that for all
a,be L with a <b, there is a ¢ € K with a <c¢<b. Consider the natural valuation v on L.

a) Justify that the valuation v 1 K induced by v on K is equivalent to the natural valuation
on K.

b) Show that the extension (L,v)/(K,v1K) is immediate.

c¢) Give an example of immediate extension of ordered valued fields L; /K for the natural
valuations, such that K is not dense in Lj.

Solution. a) We have K,,= L, N K which is the set of bounded elements in K, so v1 K is equivalent
to the natural valuation on K (they have the same valuation ring).

b) Let y=wv(a) be an Archimedean class of an a € L*. We have y=v(|al), so we may assume that
a is strictly positive, whence a < 2 a. By density, we find a c€ K with a <c<2a. Then c is in the
same Archimedean class as a, so v(c) =1.

Let b€ Lv be the residue class of a b€ L,. Let ¢ be in the maximal ideal I, of L,. By density, we
findade K withb<d<b+|e|,s0 0<b—d<|e|. Recall that I, is convex and |e¢| =max{—¢e,e} €I,
so b—d € I, which means that d =b. Therefore, the extension (L,v)/(K,v1K) is immediate.

¢) Consider the ordered field of generalised series Ly :=Q((Q)) with the ordered abelian group (Q,
+, <) as value group. Let K7 be the subfield of L, generated by Q and {t?: g€ Q}. Then L,/ K;
is clearly immediate since the residue field of K is equal to the residue field Q of L, and we have
g=v(t9) €v(K{) for each g€ Q.

Let tr,: L1 — L be the function sending a series a € L to its trunction of length w, ie. if the
ordinal v has the same order type as suppa and ¢: vy — suppa is an order preserving bijection, then

tru(@)= 30 alp(a) 9.

a<yNa<w

Since K7 is countable, so is tr,(Ki). So there is a sequence u € {—1, 1}N such that a:=
Y onen (n) """ does not lie in tr,(K1). Any series b in the interval [a —t!, a +t!] of Ly must
satisfy tr,(b) = tr,(a). Indeed otherwise we would have min (supp (b —a)) =v(b—a) < ";1 <
1 for a certain n € N. We deduce that [a —t!,a+ 1] N K; = @, therefore Ly /K is not dense.

Exercise 37

Let G denote the ring of germs [ f] of functions f: (a,+00) — R. Let H be a Hardy field.

a) Let f € Py (i.e. f€ H is positive infinite). Show that f’> 0.



b) Let f, g€ H* such that v(f),v(g)#0. Show that

v(f) <v(g)=v(f') <v(g').

¢) Show that the function

exp:Gg — G
[f] — [expo f]

is well-defined.

d) Assume that we have exp(H)=H~. Show that (H,+,-,0,1,<,exp) is an ordered exponential
field and that exp is compatible with the natural valuation on H.

Solution. a) Recall that f is the germ of an eventually monotonous function, and that the
monotonicity of that function is given by the sign of f’. Since f is positive infinite, that sign cannot
be negative (since a strictly decreasing or constant function has an upper bound). So f/>0.

b) Note that g—: has a limit at +00 in RU {£oo}. Now by I'Hospital’s rule, g has the same limit.
Now a quotient % for a,b€ H* has limit +oo if and only if v(a) <wv(b), so the result follows.

c) Let fo, f1 be functions with [fo] =[f1]. Given a € R such that fy and f; coincide on (a,+00), so
do expo fp and expo f; coincide on (a, +00). Therefore [expo fo] =[expo fi], so exp([ fo]) =[expo fo]
is well-defined.

d) For f={fo],9g=1[g0) €3G, given an a € R such that fy and go are both defined on I = (a,
+00), we have we have exp(f + g) = [exp o ((fo+ go) 1 )] = [(exp o (fo) 1 1) - (expo (go) 1I)] =

[expo fo] - [expo go] =exp(f) -exp(g). Moreover, if f >0, then given a b€ R such that fy(t) >0 for all
t > b, we have expo f>1 on (b, +00), so exp(f) > 1. Therefore exp is a strictly increasing morphism
(H,+,<)— (H>Y,-,<). It is surjective by assumption. So (H ,exp) is an ordered exponential field.
Exercise 38

Let (K, <,exp) be a non-Archimedean ordered exponential field and let a € Pk be positive infinite.
Assume that exp satisfies the following growth property:

Va € K, exp(a) >a+1. (1)
Let ¢ € Q>°. Show that we have
a) 2a>a+q.
b) a?> qa.
c) exp(log(a)?) > a’.
d) exp(a) > exp(log(a)?).

Solution. For each n € N, we will write log,, (resp. exp,) for the n-fold iterate of log (resp. exp)
on PK.
a) Since a € Pk, we have a >Q so 2a=a+a>a+q.

b) Since a € P, we have a?>>Na so a?> qa.

c) Since log(a) € P, applying b) for log(a) gives (loga)? > qlog(a). As exp is order preserving, we
get

exp(log(a)?) > exp(qlog(a)) = a.



d) By applying (1) to b:=logs(a) € Pk, we get exp(b) >b+1, so
expa(b) = exp(1) exp(b).
We have exp(1) >2 by (1), so a) gives expa(b) > 2exp(b) = exp(b) + log(q) =logs(a) +log(q). Now
exps(b) > exp(logs(a) +1log(q)) = qloga(a),

We deduce that a =expa4(b) > (log(a))?, so exp(a) = exp(log(a)?).
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