REAL ALGEBRAIC GEOMETRY II

Exercise Sheet 12 (Final)

Convex valuations, Hardy fields and exponential fields

Exercise 36

Let (L, \leq) be an ordered field and let $K \subseteq L$ be a dense subfield, i.e. a subfield such that for all $a, b \in L$ with a < b, there is a $c \in K$ with a < c < b. Consider the natural valuation v on L.

- a) Justify that the valuation $v \upharpoonright K$ induced by v on K is equivalent to the natural valuation on K.
- b) Show that the extension (L, v)/(K, v | K) is immediate.
- c) Give an example of immediate extension of ordered valued fields L_1/K_1 for the natural valuations, such that K_1 is not dense in L_1 .

Solution. a) We have $K_v = L_v \cap K$ which is the set of bounded elements in K, so $v \upharpoonright K$ is equivalent to the natural valuation on K (they have the same valuation ring).

b) Let $\gamma = v(a)$ be an Archimedean class of an $a \in L^{\times}$. We have $\gamma = v(|a|)$, so we may assume that a is strictly positive, whence a < 2a. By density, we find a $c \in K$ with a < c < 2a. Then c is in the same Archimedean class as a, so $v(c) = \gamma$.

Let $\bar{b} \in Lv$ be the residue class of a $b \in L_v$. Let ε be in the maximal ideal I_v of L_v . By density, we find a $d \in K$ with $b < d < b + |\varepsilon|$, so $0 < b - d < |\varepsilon|$. Recall that I_v is convex and $|\varepsilon| = \max\{-\varepsilon, \varepsilon\} \in I_v$, so $b - d \in I_v$, which means that $\bar{d} = \bar{b}$. Therefore, the extension $(L, v) / (K, v \mid K)$ is immediate.

c) Consider the ordered field of generalised series $L_1 := \mathbb{Q}((\mathbb{Q}))$ with the ordered abelian group $(\mathbb{Q}, +, <)$ as value group. Let K_1 be the subfield of L_1 generated by \mathbb{Q} and $\{t^g : g \in \mathbb{Q}\}$. Then L_1/K_1 is clearly immediate since the residue field of K_1 is equal to the residue field \mathbb{Q} of L_1 , and we have $g = v(t^g) \in v(K_1^{\times})$ for each $g \in \mathbb{Q}$.

Let $\operatorname{tr}_{\omega}: L_1 \longrightarrow L_1$ be the function sending a series $a \in L_1$ to its trunction of length ω , i.e. if the ordinal γ has the same order type as $\operatorname{supp} a$ and $\varphi: \gamma \longrightarrow \operatorname{supp} a$ is an order preserving bijection, then

$$\operatorname{tr}_{\omega}(a) = \sum_{\alpha < \gamma \land \alpha < \omega} a(\varphi(\alpha)) t^{\varphi(\alpha)}.$$

Since K_1 is countable, so is $\operatorname{tr}_{\omega}(K_1)$. So there is a sequence $u \in \{-1, 1\}^{\mathbb{N}}$ such that $a := \sum_{n \in \mathbb{N}} u(n) t^{(n-1)/n}$ does not lie in $\operatorname{tr}_{\omega}(K_1)$. Any series b in the interval $[a - t^1, a + t^1]$ of L_1 must satisfy $\operatorname{tr}_{\omega}(b) = \operatorname{tr}_{\omega}(a)$. Indeed otherwise we would have min $(\operatorname{supp}(b-a)) = v(b-a) \leq \frac{n-1}{n} < 1$ for a certain $n \in \mathbb{N}$. We deduce that $[a - t^1, a + t^1] \cap K_1 = \emptyset$, therefore L_1/K_1 is not dense.

Exercise 37

Let \mathcal{G} denote the ring of germs [f] of functions $f:(a, +\infty) \longrightarrow \mathbb{R}$. Let H be a Hardy field.

a) Let $f \in P_H$ (i.e. $f \in H$ is positive infinite). Show that f' > 0.

b) Let $f, g \in H^{\times}$ such that $v(f), v(g) \neq 0$. Show that

$$v(f) < v(g) \Longrightarrow v(f') < v(g').$$

c) Show that the function

$$\begin{aligned} \exp: \mathcal{G} &\longrightarrow \mathcal{G} \\ [f] &\longmapsto \ [\exp \circ f] \end{aligned}$$

is well-defined.

d) Assume that we have $\exp(H) = H^{>}$. Show that $(H, +, \cdot, 0, 1, <, \exp)$ is an ordered exponential field and that exp is compatible with the natural valuation on H.

Solution. a) Recall that f is the germ of an eventually monotonous function, and that the monotonicity of that function is given by the sign of f'. Since f is positive infinite, that sign cannot be negative (since a strictly decreasing or constant function has an upper bound). So f' > 0.

b) Note that $\frac{f'}{g'}$ has a limit at $+\infty$ in $\mathbb{R} \cup \{\pm \infty\}$. Now by l'Hospital's rule, $\frac{f}{g}$ has the same limit. Now a quotient $\frac{a}{b}$ for $a, b \in H^{\times}$ has limit $\pm \infty$ if and only if v(a) < v(b), so the result follows.

c) Let f_0, f_1 be functions with $[f_0] = [f_1]$. Given $a \in \mathbb{R}$ such that f_0 and f_1 coincide on $(a, +\infty)$, so do $\exp \circ f_0$ and $\exp \circ f_1$ coincide on $(a, +\infty)$. Therefore $[\exp \circ f_0] = [\exp \circ f_1]$, so $\exp([f_0]) = [\exp \circ f_0]$ is well-defined.

d) For $f = [f_0]$, $g = [g_0] \in \mathcal{G}$, given an $a \in \mathbb{R}$ such that f_0 and g_0 are both defined on $I = (a, +\infty)$, we have we have $\exp(f + g) = [\exp \circ ((f_0 + g_0) \mid I)] = [(\exp \circ (f_0) \mid I) \cdot (\exp \circ (g_0) \mid I)] = [\exp \circ f_0] \cdot [\exp \circ g_0] = \exp(f) \cdot \exp(g)$. Moreover, if f > 0, then given a $b \in \mathbb{R}$ such that $f_0(t) > 0$ for all $t \ge b$, we have $\exp \circ f_0 > 1$ on $(b, +\infty)$, so $\exp(f) > 1$. Therefore \exp is a strictly increasing morphism $(H, +, <) \longrightarrow (H^{>0}, \cdot, <)$. It is surjective by assumption. So (H, \exp) is an ordered exponential field.

Exercise 38

Let (K, \leq, \exp) be a non-Archimedean ordered exponential field and let $a \in P_K$ be positive infinite. Assume that exp satisfies the following growth property:

$$\forall a \in K, \exp(a) \ge a+1. \tag{1}$$

Let $q \in \mathbb{Q}^{>0}$. Show that we have

- a) 2a > a + q.
- b) $a^2 > q a$.
- c) $\exp(\log(a)^2) > a^q$.
- d) $\exp(a) > \exp(\log(a)^q)$.

Solution. For each $n \in \mathbb{N}$, we will write \log_n (resp. \exp_n) for the *n*-fold iterate of log (resp. exp) on P_K .

a) Since $a \in P_K$, we have $a > \mathbb{Q}$ so 2a = a + a > a + q.

b) Since $a \in P_K$, we have $a^2 > \mathbb{N} a$ so $a^2 > q a$.

c) Since $\log(a) \in P_K$, applying b) for $\log(a)$ gives $(\log a)^2 > q \log(a)$. As exp is order preserving, we get

$$\exp(\log(a)^2) > \exp(q\log(a)) = a^q.$$

d) By applying (1) to $b := \log_4(a) \in P_K,$ we get $\exp(b) \geqslant b+1,$ so

$$\exp_2(b) \ge \exp(1) \exp(b).$$

We have $\exp(1) \ge 2$ by (1), so a) gives $\exp_2(b) \ge 2\exp(b) \ge \exp(b) + \log(q) = \log_3(a) + \log(q)$. Now

$$\exp_3(b) \ge \exp(\log_3(a) + \log(q)) = q \log_2(a),$$

We deduce that $a = \exp_4(b) \ge (\log(a))^q$, so $\exp(a) \ge \exp(\log(a)^q)$.