REAL ALGEBRAIC GEOMETRY II

Exercise Sheet 5

Ordered abelian groups and valued fields

Exercise 17 (4 points)

Let $[\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$ be an ordered system of Archimedean ordered abelian groups. Let

$$G := \bigsqcup_{\gamma \in \Gamma} \, B(\gamma)$$

and define a relation $<_{\mathrm{lex}}$ on G by

 $0 <_{\text{lex}} g: \iff (g \neq 0 \land 0 < g(v_{\min}(g))).$

- a) Show that $(G, <_{\text{lex}})$ is an ordered abelian group.
- b) Show that v_{\min} and the natural valuation v on G are equivalent.

Exercise 18

(4 points)

Let $p \in \mathbb{N}$ be prime. Define the map v_p on \mathbb{Q} as follows

- Let $v_p(0) = +\infty$.
- For any $k \in \mathbb{Z} \setminus \{0\}$, let $v_p(k) = \max\{\ell \in \mathbb{N}_0 : p^l \text{ divides } k \text{ in } \mathbb{Z}\}.$
- For any $k, m \in \mathbb{Z} \setminus \{0\}$, let $v_p(\frac{k}{m}) = v_p(k) v_p(m)$.
- a) Justify that v_p is well-defined.
- b) Show that v_p is a valuation on \mathbb{Q} .
- c) Determine R_{v_p} , I_{v_p} and K_{v_p} .

Exercise 19 (4 points)

Let $K = \mathbb{R}((X))$. So the underlying real vector space of K is the Hahn product $K = \mathbf{H}_{n \in \mathbb{Z}} \mathbb{R}$.

- a) Let v_{\min} be the map on K defined in Real Algebraic Geometry I, Lecture 24, Notation 1.4. Show that (K, v_{\min}) is a valued field and determine its value group $G_{v_{\min}}$ and its residue field $K_{v_{\min}}$.
- b) Consider K as an ordered field with the ordering induced by 0 < X < r for all $r \in \mathbb{R}$ with r > 0. Let v be the natural valuation on K. Determine the value group G_v and the residue field K_v .

c) Show that

$$\varphi \colon G_{v_{\min}} \longrightarrow G_v, \ v_{\min}(x) \mapsto v(x)$$

is an order-preserving isomorphism of groups and that

 $\psi \colon K_{v_{\min}} \longrightarrow K_v, \ av_{\min} \mapsto av$

is an order-preserving isomorphism of fields.

Exercise 20 (5 points)

Show that there is no non-trivial valuation on any algebraic extension K/F of a finite field F.

Please hand in your solutions by Thursday, 25 May 2023, 10:00 (postbox 14 in F4).