REAL ALGEBRAIC GEOMETRY II

Exercise Sheet 6

Hardy fields and Neumann's lemma

Exercise 21

(4 points)

Let H be a Hardy field.

- a) Recall the definition of asymptotic equivalence \sim on H (Real Algebraic Geometry II, Script 14, Definition 2.1). Show that \sim coincides with the Archimedean equivalence relation on H.
- b) Hence show that $(v(H^{\times}), +, <)$ is an ordered abelian group and that v is a valuation on H.
- c) Show that

$$R_{v} = \{ f \in H : \lim_{x \to +\infty} f(x) \in \mathbb{R} \},$$

$$I_{v} = \{ f \in H : \lim_{x \to +\infty} f(x) = 0 \}, \text{ and }$$

$$\mathcal{U}_{v} = \{ f \in H : \lim_{x \to +\infty} f(x) \in \mathbb{R}^{\times} \}.$$

Exercise 22

(4 points)

Let G be an ordered abelian group. Let $A, B \subseteq G$ be well-ordered subsets. Show that

$$A + B := \{a + b : (a, b) \in A \times B\}$$

is a well-ordered subset of G.

Exercise 23

(4 points)

Let k be an Archimedean ordered field and let G be a non-trivial ordered abelian group.

- a) Show that $<_{\text{lex}}$ is an ordered field ordering on k((G)), i.e. that for $a, b, c \in k((G))$, we have
 - if $a <_{\text{lex}} b$, then $a + c <_{\text{lex}} b + c$
 - if $0 <_{\text{lex}} a$ and $0 <_{\text{lex}} b$, then $0 <_{\text{lex}} a b$.
- b) Let $\varepsilon \in k((G))$ with supp $\varepsilon \subseteq G^{>0}$. Show that

$$(1-\varepsilon)\left(\sum_{n=0}^{+\infty} \varepsilon^n\right) = 1.$$

c) Let $g_1, g_2 \in G$. Compute $(t^{g_1} + t^{g_2})^{-1}$.

Exercise 24

(4 points)

Let G be a non-trivial ordered abelian group, and let $K = \mathbb{R}((G))$. For any $\varepsilon \in I_v$, define

$$e(\varepsilon) := \sum_{n=0}^{+\infty} \frac{\varepsilon^n}{n!}$$

- a) Show that e is a well-defined function from I_v to $1 + I_v$.
- b) Show that e is an order-preserving homomorphism from $(I_v,+,0,<)$ to $(1+I_v,\cdot,1,<)$.
- c) Bonus question: Show that

$$\ell: 1 + I_v \longrightarrow I_v; \ 1 + \varepsilon \mapsto \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} \varepsilon^n$$

is the inverse function of e (which is thus bijective).

Please hand in your solutions by Thursday, 01 June 2023, 10:00 (postbox 14 in F4).