REAL ALGEBRAIC GEOMETRY II

Exercise Sheet 9

Convex valuations

Exercise 28 (4 points)

Let K be a field with valuations w_1 and w_2 .

- a) Show that the following are equivalent:
 - i. w_2 is coarser than w_1 ,
 - ii. $I_{w_2} \subseteq I_{w_1}$,
 - iii. for all $a, b \in K$, we have

$$w_1(a) \leqslant w_1(b) \Longrightarrow w_2(a) \leqslant w_2(b).$$

b) Suppose that w_2 is coarser than w_1 . Let

$$\varphi \colon K_{w_2} \longrightarrow Kw_2 \, ; a \mapsto a \, w_2$$

be the residue map for w_2 , where K_{w_2} denotes the valuation ring and Kw_2 the residue field of (K, w_2) . Show that $\varphi(K_{w_1})$ is a valuation ring of Kw_2 .

Exercise 29 (4 points)

a) Let $\mathbb{K} = \mathbb{R}((\mathbb{Q} \times \mathbb{R}))$, where $\mathbb{Q} \times \mathbb{R}$ is ordered lexicographically. Let

$$C = \{(0, r) : r \in \mathbb{R}\}.$$

- i. Compute the convex valuation w on \mathbb{K} associated to C.
- ii. Find the value group and the residue field of (\mathbb{K}, w) .
- iii. Compute the rank of (\mathbb{K}, w) .
- b) Let $K = \mathbb{R}(t)$. Show that for any ordering on K, the rank of K is the singleton $\{K\}$.

Exercise 30 (4 points)

Let $A = \mathbb{R}[x, x^{-1}, e^x, \log x]$ be the ring of germs at $+\infty$ generated by the germs x of the identity, x^{-1} of the inverse function, e^x of the exponential function and $\log x$ of the natural logarithm.

a) Let $k \in \mathbb{Z}$ and $l, m \in \mathbb{N}$. Show that the germ $x^k e^{lx} (\log x)^m$ is infinite if and only if $(l, k, m) >_{\text{lex}} (0, 0, 0)$ in the lexicographic ordering $<_{\text{lex}}$ on $\mathbb{N} \times \mathbb{Z} \times \mathbb{N}$.

- b) Show that A is closed under derivation.
- c) Show that each $f \in A$ which is non-zero is invertible as a germ.
- d) Show that the fraction field H of A in the ring of germs is a Hardy field.
- e) Compute the rank of H with its natural valuation.

Exercise 31 (bonus) (6 points)

Let (K, v) be a valued field with valuation ring R_v and write k = Kv for its residue field. Let w be a valuation on k with valuation ring R_w .

- a) Let $\varphi: R_v \longrightarrow k$ be the residue map and write $R := \varphi^{-1}(R_w) \subseteq R_v$. Show that R is a valuation ring on K. We write $v \circ w$ for the corresponding valuation, called the *compositum* of v with w.
- b) Show that $v \circ w$ is finer than v and determine the corresponding value group.
- c) Assume that $k = \mathbb{R}((\mathbb{R}))$ and $K = k((\mathbb{Q}))$, and that w and v are the respective v_{\min} valuations. What is the valuation $v \circ w$ on K?

Please hand in your solutions by Thursday, 29 June 2023, 10:00 (postbox 14 in F4).