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The book under review is a textbook that serves as an introduction to the basics of real
algebraic geometry, to the framework and instances of conic optimization and to a field
that grew since the turn of the millennium out of the interplay of both, namely polynomial
optimization. The seventh of the ten chapters of the book is exactly about this latter field
but all the other chapters are directly or indirectly related to it.

Hence we start by explaining what is a polynomial optimization problem (POP). It is
the problem of minimizing (or maximizing) a polynomial objective p(x) over all x ∈ Rn

subject to a system of polynomial inequalities

g1(x) ≥ 0, . . . , gm(x) ≥ 0.

The feasible sets of POPs, i.e., the solution sets of such systems are called basic closed
semialgebraic sets. A general semialgebraic set is a boolean combination of basic closed
ones. Solving such POPs is very hard in general, even in the unconstrained case m = 0
and already when p is of degree four, as the author explains on the last pages of his
appendix.

On the other hand, there is a general procedure called real quantifier elimination which
solves this and even many more general problems in theory algorithmically. For the above
POP, the first step would be to eliminate the n existential quantifiers in the formula

∃x1 . . . ∃xn(y = p(x) ∧ g1(x) ≥ 0 ∧ . . . ∧ gm(x) ≥ 0)

interpreted in the reals. In general, as Tarski knew already in the 1930s, one can eliminate
all quantifiers over the reals in formulas that are built up from polynomial inequalities
inductively by the quantifiers ∀,∃ and the logical connectives ∨, ∧ and ¬. Geometrically,
this means that projections of semialgebraic sets are again semialgebraic. It will later
become important that the same elimination procedure works not only over the reals
but even simultaneously for each so called real closed field. This is essentially Tarski’s
transfer principle we will mention later. Real closed fields go back to Artin and Schreier
in the 1920s and generalize the field of real numbers in very much the same way than
algebraically closed fields generalize the field of complex numbers. All this is treated in
Chapter 3 of the reviewed book. This quantifier elimination procedure relies on classical
methods of real root counting of univariate polynomials that are treated in Chapter 1.

While of theoretical importance, Tarski’s procedure is even on small examples too
inefficient. In the 1970s, Collins discovered a new method for real quantifier elimination
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that can deal in practice with more realistic albeit still small instances. It is based
on cylindrical algebraic decomposition. In the above example of a POP, it would first
decompose the set

{(x, y) ∈ Rn × R | p(x)− y = 0, g1(x) ≥ 0, . . . , gm(x) ≥ 0}

into finitely many connected semialgebraic sets on which each of the m + 1 defining
polynomials has constant sign. Omitting some of the technical details (such as computing
with real algebraic numbers), the author presents this in Chapter 4.

The question persists of how to practically solve a POP, at least approximately, at least
in certain cases. The easiest case where even large instances can be solved effectively in
theory and in practice, is the case where the objective p and the constraining polynomials
g1, . . . , gm all have degree at most 1 (i.e., they are linear as a polynomial or affine-linear as
a function). In this case, the POP becomes simply a linear program (LP) and its feasible
set is a polyhedron. An LP is the easiest case of a conic optimization problem which is the
problem of minimizing a linear objective function over an affine slice of a closed convex
cone. In the case of an LP, the cone is just the nonnegative orthant [0,∞)n.
A strange but useful way of viewing the nonnegative orthant, is to see it as the cone of

positive semidefinite (psd) real diagonal matrices. Now all real symmetric (psd) matrices
are orthogonally conjugate to a real diagonal (psd) matrix. Taking as a cone the cone of
all psd matrices instead of the nonnegative orthant, the corresponding conic optimization
problem gets a semidefinite program (SDP). The feasible sets of SDPs are called spectra-
hedra. Spectrahedra form a very interesting compromise between polyhedra and arbitrary
closed convex semialgebraic sets, as they still behave in many respects like polyhedra but
they allow for some roundness in their shapes. This is the message of Chapter 2 of the
book under review. Chapter 5 introduces the reader to linear, semidefinite and conic
optimization, in this order of increasing generality, and its duality theory. At the end
of that chapter, the author gives an idea of how to solve these optimization problems
using interior point algorithms driven by self-concordant barrier functions whose theory
has been developed by Nesterov and Nemirovski in the 1990s. For example, the negated
logarithm of the determinant is an easily computable such barrier function on the cone of
psd matrices and this is why SDPs can mostly still be solved efficiently (although not as
fast as LPs).

If our POP is a quadratic optimization problem (i.e., the polynomials p and gi are of
degree at most 2), then it is in general already very hard to solve. In fact, many NP-hard
combinatorial problems can easily be encoded as a quadratic optimization problem. Even
LPs augmented by the 0-1-constraints x2

i = xi (which could be written as x2
i ≥ xi and

x2
i ≤ xi to fit into the framework above) are usually intractable. In the 1990s it became

popular in the field of combinatorial optimization to relax such a quadratic optimization
problem in the following way: In a first step, one replaces all occurrences of a quadratic
monomial xixj with i ≤ j by a new variable xij. This extremely näıf procedure would
usually result in an LP that approximates the original quadratic POP very poorly. To
improve the quality, one turns this LP into an SDP by adding the constraint that the
matrix X := (xij)i,j∈{0,...,n} is psd where x00 := 1, x0i := xi for i > 0 and xji := xij

for i > j. This additional semidefinite constraint memorizes partially where the new
variables xij came from. The full memory would need in addition that X is a rank one
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matrix. This condition is sacrificed for tractability. The price to pay is that the SDP only
approximates the original POP. How good the approximation is, depends in a very subtle
way on the original POP and is usually analyzed through an every-growing zoo of (often
very subtle) rounding procedures that try to round an optimal solution of the SDP to an
approximately optimal solution of the POP. This established semidefinite programming
as a major tool in the area of approximation algorithms for combinatorial problems [4]
which is beyond the scope of the book under review.

Pioneered by Lasserre, Parrilo and others, it became apparent around the year 2000,
that some of these ideas elegantly generalize to POPs of higher degree: One now introduces
new variables for all monomials of a fixed relaxation degree d which can be chosen higher
than the degree of the POP. Without going into details, one gets now an (for big d
unfortunately huge) SDP with several semidefinite constraints: The analog to the matrix
X from a above now has a multivariate Hankel structure and corresponds to a linear
form on the space of polynomials of degree d. Requiring it to be psd amounts to say
that this linear form maps sum-of-squares polynomials into the nonnegative reals. In
addition, each constraint gi(x) ≥ 0 of the original POP, now gives rise to an additional
semidefinite constraint meaning that this same linear form maps gi multiplied by a sum-
of-squares polynomial into the nonnegative reals. In this way, one can approximate the
original POP by an SDP depending on the relaxation degree d. When d increases, the
approximation gets better or at least not worse. In practice, one chooses d small enough
so that one can solve the corresponding SDP in a small amount of time. In theory, most
results treated in the book under review are however about the limit d → ∞. For example,
using Putinar’s Positivstellensatz explained below, one can show that the optimal value
of the SDP approaches the optimal value of the original POP as the relaxation degree d
goes to infinity under the so-called Archimedean condition on the g1, . . . , gm. This gives
at least hope that in certain cases, even for a d that still allows to solve the SDP in
practice, the limit is attained and optimal points of the original POP can be extracted
from an optimal solution of the SDP. Some criteria for when this works are based on the
flat extension theorem of Curto and Fialkow which the author decided to present without
proof. This is a criterion for when a linear form as mentioned above (mapping weighted
sum-of-squares polynomials to the nonnegative numbers) is integration with respect to
a measure. It is thus a solution to the truncated moment problem, namely the problem
when a finite real (multi-)sequence is the sequence of moments of a measure. The author
also emphasizes the role of the (non-truncated) moment problem in this regard. These
beautiful ideas are treated in Chapter 7 of the book under review.

Concerning still the just reviewed Chapter 7, three more comments of different nature
are in order: First, at the beginning of the chapter, the author introduces the reader
smoothly to the topic of polynomial optimization by first presenting a variant using LP
relaxations instead of SDP relaxations in the case where the feasible set of the POP is a
polytope. Similar variants would in fact also work for arbitrary basic closed semialgebraic
feasible sets. But LP relaxations have a couple of drawbacks. They exhibit often slow
convergence in practice for d → ∞, often without hope for finite convergence or for
extraction of optimal solutions for the POP.
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Second, not only in the reviewed book but also in the whole existing literature there
is so far a lack of theoretical results, relating the POP and its SDP relaxations for fixed
degree d of moderate size. There is one exception to this: In the combinatorial framework
with, say, 0-1-constraints x2

i = xi as mentioned above, but this time with d > 2, say
d = 4 or d about log2 n where n is the number of variables xi in the original POP, people
working in the area of approximation algorithms have again done a great deal of work.
This is again based on all kinds of tricky rounding procedures and has had a huge impact
on modern computational complexity theory in theoretical computer science. For good
reasons, this is not addressed in the book under review. Recent treaties introducing to
this subject are [3, 6].

Third, Chapter 7 also links the theory of SDP relaxations of POPs to one of the most
classical threads of research in real algebraic geometry, namely the theory of sum-of-
squares representations of polynomials. Indeed, it turns out that the dual SDP (to the
SDP relaxation of the POP of degree d) is the problem of maximizing a certifiable lower
bound c ∈ R for the polynomial objective p on the feasible set S of the POP (which
was defined by the system of polynomial inequalities g1(x) ≥ 0, . . . , gm(x) ≥ 0). Letting
g0 denote the constant 1 polynomial, the corresponding certificate is a weighted sum-of-
squares certificate

p− c =
m∑
i=0

sigi

with sum-of-squares polynomials si of degree small enough such that the degrees of the
sigi do not exceed d. It is Putinar’s Positivstellensatz that certifies the existence of this
representation under the Archimedean condition on the g1, . . . , gm and for each strict lower
bound c of p on S. Hereby, the degree bound d however often has to approach infinity
while the lower bound c approaches the infimum of p on S. This means that many
monomials appearing in the individual terms sigi of the sum on the right hand side have
to cancel out after summing over i ∈ {0, . . . ,m}. From classical computational algebraic
geometry and the theory of Gröbner bases, this phenomenon of monomial cancellation
frequently occurs when the multipliers are just assumed to be arbitrary polynomials rather
than sum-of-squares polynomials. In real algebraic geometry, the Archimedean condition
is a technical condition that allows for these cancellations even though the si are sum-
of-squares polynomials. This condition implies that S is compact. Conversely, if S is
compact, the Archimedean condition can be ensured by adding a “big ball constraint” to
the gi without changing S.

The just outlined duality is the reason why the theory of sum-of-squares representations
of polynomials is the theoretical underpinning of modern polynomial optimization. The
author thus develops this classical part of real algebraic geometry already in the preceding
chapter which is Chapter 6. Here finally general real closed fields and Tarski’s transfer
principle from Chapter 3 come into play. Hilbert’s Nullstellensatz from the 1890s is a
classical result from algebraic geometry that says (in its most basic form from which
more elaborate forms can easily be derived) that a system of polynomial inequalities
h1(x) = 0, . . . , hm(x) = 0 over an algebraically closed field C (such as C) has no solution
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in x ∈ Cn (if and) only if

1 =
m∑
i=1

fihi

for some polynomials fi. The Positivstellensatz from real algebraic geometry (due to
Krivine in the 1960s and rediscovered by Prestel and Stengle in the 1970s) says (again in
its most basic form from which again more elaborate forms can easily be derived) that
a system of polynomial inequalities g1(x) ≥ 0, . . . , gm(x) ≥ 0 over a real closed field R
(such as R) has no solution in x ∈ Rn (if and) only if

−1 =
∑

α∈{0,1}m
sαg

α1
1 · · · gαm

m

for some sum-of-squares polynomials sα. The proof is non-constructive and goes by con-
traposition:

Suppose −1 cannot be written in this way. Then enlarge the system of inequalities by
Zorn’s lemma (allowing it now to be infinite) as much as possible so that −1 does still
not have a corresponding representation. From this somehow formally consistent infinite
system of inequalities, one constructs now a real closed extension field R′ of R where
this enlarged infinite system has a solution. In particular, the original finite system of
inequalities has a solution over R′. By Tarski’s transfer it does so over R.

The Positivstellensatz thus characterizes when a POP is infeasible but is for several
reasons not yet well adapted to approximately solve POPs. The construction of R′ in
its proof needs basically the notion of the real spectrum which is implicitly developed
in the same Chapter 6 exactly to the point that is needed (not explicitly defined, not
on arbitrary commutative rings, without its topology). These arguments get a little
less technical for a precursor of the Positivstellensatz which is the solution that Artin
obtained in the 1920s to Hilbert’s 17th problem. Artin’s theorem is thus presented before
the Positivstellensatz although it can easily be derived from it. Better suited for POPs is
Putinar’s Positivstellensatz already mentioned above which, although proved only in the
1990s, neither needs real closed fields nor the real spectrum for its proof. Another result
presented in Chapter 6 is the celebrated Schmüdgen’s Positivstellensatz from the 1990s.
Its proof is based on the Positivstellensatz and thus it is much deeper than Putinar’s
result. It is here (and usually elsewhere) presented as a variant of Putinar’s theorem but
really its added value compared to Putinar’s theorem is that it characterizes compactness
of the feasible set of a POP in a similar way than the Positivstellensatz characterizes its
emptiness (replacing −1 on the left hand side of the corresponding algebraic identity by
r2 −

∑
i x

2
i for some r ∈ R). Finally, other theorems playing a similar role than Putinar’s

theorem but for LP instead of SDP relaxations are also presented.
Whereas in the previous chapters, spectrahedra appeared as a tool, they become the

object of investigation in Chapter 9. It is astonishing that all kinds of questions that
are clarified for polyhedra are widely open for spectrahedra. How to decide efficiently
emptiness, boundedness and containment of spectrahedra? What is a geometric char-
acterization of spectrahedra? What are the projections of spectrahedra? The author
discusses these questions and provides partial answers. The proofs of the easier state-
ments are given and are omitted for the harder ones. A very active research question is
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whether spectrahedra are (up to technicalities) precisely the so-called rigidly convex sets.
This has been conjectured by Helton and Vinnikov in 2007 who also have proven it in the
plane. Two years later, Helton and Nie conjectured that the projections of spectrahedra
are exactly the convex semi-algebraic sets but this has been disproved by Scheiderer in
2018.

Chapter 9 is a concise first introduction to the beautiful topic of univariate and multi-
variate stable and hyperbolic polynomials. Very roughly speaking, these are polynomials
with many real zeros which have their place in combinatorics and optimization, respec-
tively, and only in the last decades have regained popularity amongst real algebraic geome-
ters. As an example of their importance in combinatorics, the author defines the matching
polynomial of a graph and uses it to show that the number of matchings of a graph of a
certain size first increases and then decreases with growing size. As an example of their
role in conic optimization, the author defines hyperbolicity cones whose affine sections are
exactly the already mentioned rigidly convex sets. These have nice self-concordant barrier
functions that enable interior point methods to navigate over them. This leads to a whole
subbranch of conic optimization called hyperbolic optimization. Hyperbolic programming
over the cone of psd matrices is just semidefinite programming. The applications of hy-
perbolic optimization beyond semidefinite programming are however still rare and, even
more, it is not clear whether each hyperbolicity cone is a linear section of the cone of psd
matrices. This latter conjecture is equivalent to the conjecture of Helton and Vinnikov
from 2007 already mentioned. It is related to the topic of determinantal representations
of hyperbolic polynomials. With respect to this latter topic, the author states the Helton-
Vinnikov theorem from 2007 that says that a hyperbolic polynomial in three variables is
sort of a “joint characteristic polynomial” of a pair of symmetric matrices. All known
proofs of this theorem are very deep and consequently this statement is given without
proof. The author presents also many classical results related to interlacing of real zero
sets of polynomials. The beautiful and important theory of stability preservers [14, 19] is
however not approached.

Finally, in Chapter 10, the author presents two other instances of tractable conic op-
timization that have proved to be very useful for polynomial (and even signomial) op-
timization. The corresponding cones are the exponential cone and the relative entropy
cone which are essentially reparametrizations of each other. Mainly in the last ten years,
these cones have been linked by many researchers, including Theobald himself, to new
non-negativity certificates that not only go beyond the traditional sum-of-squares rep-
resentation but even seem to lie in a sense orthogonal to them. Notably, these new
certificates are mainly based on the inequality of arithmetic and geometric means which
is particularly resistant to the sum-of-squares method.

In conclusion, the book under review provides an excellent introduction to the fascinat-
ing interplay between real algebraic geometry and optimization that has emerged since
the turn of the millennium. It is primarily aimed at master’s students but is also suit-
able for very good bachelor’s students and even doctoral candidates if they still need to
get acquainted with the area. Although it is a classical textbook that offers in principle
very detailed explanations and only occasionally omits proofs, it can in no way cover the
topics exhaustively. Nevertheless, it has the potential to become a standard reference
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for research articles. Among the existing textbooks, we consider it to be the one that is
best balanced between real algebraic geometry and optimization. Very pedagogically, the
author often chooses accessibility over the utmost generality and efficiency, and allows
redundancy when it helps the reader to understand the ideas.

Since a review should not only consist of praise, we mention some points of criticism
although they are minor: Sometimes, no (or at least no direct or precise) references are
given for unproven statements, not even in the notes that conclude each chapter. This
occurs particularly often when complexity bounds are mentioned, for example on Pages
76, 110 and 137. In certain places, one gets the feeling that something is being presented
as straightforward when, upon reflection, it is actually not so easy to prove, such as the
uniqueness of the minimal degree defining polynomial for a given algebraic interior on Page
178 or the fact that every psd form can be written as a finite sum of extremal psd forms on
Page 106, attributed by the author to Carathéodory but likely going back to Minkowski.
In several instances, a more algebraic perspective would have made things clearer. For
example, Theorem 7.35 on Page 164 follows (even with squares instead of sums of squares)
immediately from the fact that every reduced finite-dimensional real commutative algebra
is (by the Chinese remainder theorem) isomorphic to a direct product of finitely many
copies of R and C.
We conclude by what we think are the most important books, lecture notes and survey

articles that compete against or complete Theobald’s very appealing book. The stan-
dard resource for more classical parts of real algebraic geometry like, for example, the
topology of real algebraic sets, is still the book by Bochnak, Coste and Roy [2]. For sym-
bolic computation in real algebraic geometry that goes way beyond cylindrical algebraic
decomposition, the most important resource is the book by Basu, Pollack and Roy [1].
The best references for using SDPs to solve POPs more from the perspective of combi-
natorial optimization and theoretical computer science are perhaps the book by Gärtner
and Matousek [4] that covers the earlier development, the book of Fleming, Kothari and
Pitassi [3] that ties the method also to statistics and proof systems and the wonderful
(unpublished) lecture notes of Kunisky [6] with connections to the theories of random
graphs and tensors. These last resources aim mainly at designing theoretical polynomial
time (approximation) approximations which might not run well in practice. To have a
chance of solving larger POPs by SDPs practically, one actually has usually to do a lot of
problem-specific adaptions of the method such as exploiting sparsity in the sum-of-squares
method. Books that take that into account and at the same time make the sum-of-squares
method work for problems that go beyond polynomial optimization (such as solving or
controlling differential equations) are the books by Lasserre [7, 8], by Henrion and Korda
[5] and, very recently, by Magron and Wang [10]. The compact survey of Laurent and its
unpublished update [9] is an excellent alternative for those who are primarily interested
in solving POPs. The recent longer book by Nie [13] is always worth to consult for spe-
cific problems and applications. The books by Powers [15], by Prestel and Delzell [16],
by Marshall [11], the lecture notes by the author of this review [18] (entirely available
as videos) and the brand new book by Scheiderer [17] are introductions to real algebraic
geometry with a strong focus on positivity and sums of squares. Here, [15] is particularly
accessible for newcomers, [16] contains deep material on the subtleties of the Archimedean



8

condition and [11, 18, 17] provide important variants of Putinar’s Positivstellensatz for
nonnegative (instead of positive) polynomials that are particularly interesting for polyno-
mial optimization. The book by Netzer and Plaumann [12] is an interesting alternative
to these sources that focuses more on hyperbolic polynomials. The surveys of Pemantle
[14] and Wagner [19] are finally excellent roundups on hyperbolic and stable polynomials
and their applications.

Along with the mentioned and numerous other sources, Theobald’s book will allow more
mathematicians to experience the exciting and ongoing development in between real alge-
braic geometry and optimization that began a quarter century ago.

References

[1] Basu, S, Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Second edition, Algorithms
Comput. Math., 10 Springer-Verlag, Berlin, 2006 7

[2] Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Translated from the 1987 French
original. Revised by the authors Ergeb. Math. Grenzgeb. (3), 36 [Results in Mathematics and Related
Areas (3)] Springer-Verlag, Berlin, 1998 7

[3] Fleming, N., Kothari, P., Pitassi, T.: Semialgebraic proofs and efficient algorithm design. Found.
Trends Theor. Comput. Sci.14 (2019), no.1–2 4, 7
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