

Real Algebraic Geometry I

Exercise Sheet 3 Extensions of orderings and Laurent series

Exercise 9

(4 points)

Let K be a field and let $\mathcal{T} = \{T_i \mid i \in I\}$ be a family of preorderings on K. Show that:

(a) The intersection $\bigcap_{i \in I} T_i$ is a preordering on K.

(b) If for any $i, j \in I$ there exists $k \in I$ such that $T_i \cup T_j \subseteq T_k$, then $\bigcup_{i \in I} T_i$ is a preordering of K.

Exercise 10

(4 points)

Show by induction on $n \in \mathbb{N}$: Any ordering on a field K extends to an ordering on the field of rational functions in several variables $K(\mathbf{x}_1, \ldots, \mathbf{x}_n)$.

Exercise 11

(4 points)

We proved in lecture 2 that each Dedekind cut of \mathbb{R} corresponds to an ordering on $\mathbb{R}[x]$ and in particular on $\mathbb{R}(x)$. Describe explicitly the ordering on $\mathbb{R}[x]$ corresponding to each Dedekind cut of \mathbb{R} . Proceed as follows:

- (a) Retrieve the orderings on $\mathbb{R}[\mathbf{x}]$ corresponding to 0_+ and 0_- , using the derivatives of a generic polynomial $p \in \mathbb{R}[\mathbf{x}]$ at 0.
- (b) Using the same techniques as in (a), describe the orderings on $\mathbb{R}[x]$ corresponding to all the remaining Dedekind cuts of \mathbb{R} .
- (c) Conclude that, given an ordering on $\mathbb{R}[x]$ there exists a function

 $\sigma:\mathbb{R}[\mathbf{x}]\to\mathbb{R}$

such that $\operatorname{sign}(p(\mathbf{x})) = \operatorname{sign}(\sigma(p))$ for any $p \in \mathbb{R}[\mathbf{x}]$.

Exercise 12 (4 points)

We denote the set of real formal Laurent series by

$$\mathbb{R}((X)) := \left\{ \sum_{i=m}^{\infty} a_i X^i \mid m \in \mathbb{Z}, a_i \in \mathbb{R} \right\}.$$

For any $0 \neq A \in \mathbb{R}((X))$, we define v(A) to be the smallest integer m such that $a_m \neq 0$. Moreover, for any

$$A = \sum_{i=m}^{\infty} a_i X^i \in \mathbb{R}((X)) \text{ and } B = \sum_{i=n}^{\infty} b_i X^i \in \mathbb{R}((X)),$$

we define:

• the coefficientwise addition

$$A + B := \sum_{i=k}^{\infty} (a_i + b_i) X^i,$$

where $k = \min\{m, n\}$ and we set $a_i = 0$ for i < m and $b_i = 0$ for i < n;

• the convolution product

$$AB := \sum_{i=m+n}^{\infty} \left(\sum_{j+k=i} a_j b_k \right) X^i;$$

• the order relation

$$A \ge 0 : \Longleftrightarrow A = 0 \lor \left(A \ne 0 \land a_{v(A)} > 0\right)$$

It can be shown that $\mathbb{R}((X))$ endowed with these operations and order relation is an ordered field and that $\mathbb{R}[X]$ is a subring of $\mathbb{R}((X))$.

- (a) Show that the map $v : \mathbb{R}((X))^{\times} \to \mathbb{Z}$ is a **discrete valuation** on $\mathbb{R}((X))^{\times} = \mathbb{R}((X)) \setminus \{0\}$, i.e. that for any $A, B \in \mathbb{R}((X))^{\times}$, the following hold:
 - (i) $v(A+B) \ge \min\{v(A), v(B)\}.$
 - (ii) v(AB) = v(A) + v(B).
- (b) Deduce that $\mathbb{R}((X))$ is not real closed.

Please hand in your solutions by **Thursday**, **17 November 2022**, **10:00h** in the **postbox 14** or per e-mail to your tutor.