Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Michele Serra
Moritz Schick

Real Algebraic Geometry I

Exercise Sheet 3 Extensions of orderings and Laurent series

Exercise 9

(4 points)
Let K be a field and let $\mathcal{T}=\left\{T_{i} \mid i \in I\right\}$ be a family of preorderings on K. Show that:
(a) The intersection $\bigcap_{i \in I} T_{i}$ is a preordering on K.
(b) If for any $i, j \in I$ there exists $k \in I$ such that $T_{i} \cup T_{j} \subseteq T_{k}$, then $\bigcup_{i \in I} T_{i}$ is a preordering of K.

Exercise 10

(4 points)

Show by induction on $n \in \mathbb{N}$: Any ordering on a field K extends to an ordering on the field of rational functions in several variables $K\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$.

Exercise 11

(4 points)
We proved in lecture 2 that each Dedekind cut of \mathbb{R} corresponds to an ordering on $\mathbb{R}[x]$ and in particular on $\mathbb{R}(\mathrm{x})$. Describe explicitly the ordering on $\mathbb{R}[\mathrm{x}]$ corresponding to each Dedekind cut of \mathbb{R}. Proceed as follows:
(a) Retrieve the orderings on $\mathbb{R}[x]$ corresponding to 0_{+}and 0_{-}, using the derivatives of a generic polynomial $p \in \mathbb{R}[\mathrm{x}]$ at 0 .
(b) Using the same techniques as in (a), describe the orderings on $\mathbb{R}[x]$ corresponding to all the remaining Dedekind cuts of \mathbb{R}.
(c) Conclude that, given an ordering on $\mathbb{R}[x]$ there exists a function

$$
\sigma: \mathbb{R}[\mathrm{x}] \rightarrow \mathbb{R}
$$

such that $\operatorname{sign}(p(\mathrm{x}))=\operatorname{sign}(\sigma(p))$ for any $p \in \mathbb{R}[\mathrm{x}]$.

Exercise 12

(4 points)
We denote the set of real formal Laurent series by

$$
\mathbb{R}((X)):=\left\{\sum_{i=m}^{\infty} a_{i} X^{i} \mid m \in \mathbb{Z}, a_{i} \in \mathbb{R}\right\} .
$$

For any $0 \neq A \in \mathbb{R}((X))$, we define $v(A)$ to be the smallest integer m such that $a_{m} \neq 0$. Moreover, for any

$$
A=\sum_{i=m}^{\infty} a_{i} X^{i} \in \mathbb{R}((X)) \text { and } B=\sum_{i=n}^{\infty} b_{i} X^{i} \in \mathbb{R}((X)),
$$

we define:

- the coefficientwise addition

$$
A+B:=\sum_{i=k}^{\infty}\left(a_{i}+b_{i}\right) X^{i},
$$

where $k=\min \{m, n\}$ and we set $a_{i}=0$ for $i<m$ and $b_{i}=0$ for $i<n$;

- the convolution product

$$
A B:=\sum_{i=m+n}^{\infty}\left(\sum_{j+k=i} a_{j} b_{k}\right) X^{i} ;
$$

- the order relation

$$
A \geq 0: \Longleftrightarrow A=0 \vee\left(A \neq 0 \wedge a_{v(A)}>0\right) .
$$

It can be shown that $\mathbb{R}((X))$ endowed with these operations and order relation is an ordered field and that $\mathbb{R} \llbracket X \rrbracket$ is a subring of $\mathbb{R}((X))$.
(a) Show that the map $v: \mathbb{R}((X))^{\times} \rightarrow \mathbb{Z}$ is a discrete valuation on $\mathbb{R}((X))^{\times}=\mathbb{R}((X)) \backslash\{0\}$, i.e. that for any $A, B \in \mathbb{R}((X))^{\times}$, the following hold:
(i) $v(A+B) \geq \min \{v(A), v(B)\}$.
(ii) $v(A B)=v(A)+v(B)$.
(b) Deduce that $\mathbb{R}((X))$ is not real closed.

Please hand in your solutions by Thursday, 17 November 2022, 10:00h in the postbox 14 or per e-mail to your tutor.

