

Real Algebraic Geometry I

Exercise Sheet 4 Real closed fields

Exercise 13

(4 points)

Let (K, \leq) be an ordered field and let $\mathcal{B} := \{ [a, b[\mid a, b \in K, a < b] \cup \{\emptyset\}, \text{ i.e. the collection of all open intervals and the empty set.}$

- (a) Show that \mathcal{B} forms the base of a topology on K, i.e. that
 - (i) \mathcal{B} is closed under finite intersections
 - (ii) \mathcal{B} covers $K: K \subseteq \bigcup_{A \in \mathcal{B}} A$.

The topology on K induced by \mathcal{B} is called the **order topology**. For the remainder of this exercise, we will consider K as a topological space, endowed with the order topology.

- (b) Show that the field operations $+: K \times K \to K$ and $\cdot: K \times K \to K$ are continuous, where $K \times K$ is endowed with the product topology.
- (c) Show that the following are equivalent:
 - (i) K is not Dedekind complete.
 - (ii) K is disconnected, i.e., K can be expressed as the union of two disjoint, non-empty open subsets.
 - (iii) K is totally disconnected, i.e., its only connected components are one-point sets.

Exercise 14

(4 points)

Let R be a real closed field and let $f(\mathbf{x}) = d_m \mathbf{x}^m + d_{m-1} \mathbf{x}^{m-1} + \ldots + d_0 \in R[\mathbf{x}]$ with $d_m \neq 0$. Show that the following statements are equivalent:

- (i) $f \ge 0$ on R, i.e. $f(a) \ge 0$ for any $a \in R$.
- (ii) $d_m > 0$ and all real roots of f, i.e. all roots of f in R, have even multiplicity.
- (iii) $f = g^2 + h^2$ for some $g, h \in R[x]$.

(iv) $f \in \sum R[x]^2$.

Exercise 15

(4 points)

Let R be a real closed field and let $f(\mathbf{x}) = \mathbf{x}^m + d_{m-1}\mathbf{x}^{m-1} + \ldots + d_0$ be a monic polynomial over R. Suppose that all roots a_1, \ldots, a_m of f are real. Show that

$$a_i \ge 0 \text{ for all } i \in \{1, \dots, m\} \iff (-1)^{m-i} d_i \ge 0 \text{ for all } i \in \{0, \dots, m-1\}.$$

Exercise 16

(4 points)

- (a) Construct a countable field K and two orderings \leq and \leq' on K such that (K, \leq) is Archimedean and (K, \leq') is non-Archimedean.
- (b) Let R be a real closed field and K a subfield of R. Show that

$$K^{\text{ralg}} = \{ \alpha \in R \mid \alpha \text{ is algebraic over } K \},$$

the relative algebraic closure of K in R, is real closed. Give an example of a real closed field R and a proper subfield $K \subseteq R$ such that $K^{\text{ralg}} = R$.

(c) Construct a countable *Archimedean* real closed field and a countable *non-Archimedean* real closed field.

Please hand in your solutions by **Thursday**, **24 November 2022**, **10:00h** in the **postbox 14** or per e-mail to your tutor.