Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Michele Serra
Moritz Schick


WS 2022 / 2023

## Real Algebraic Geometry I

## Exercise Sheet 5

Counting roots

## Exercise 17

(4 points)
(a) How many distinct orderings on $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ extend the ordering on $\mathbb{Q}$ ?
(b) How many distinct orderings on $\mathbb{Q}(\pi)$ extend the ordering on $\mathbb{Q}$ ?

Justify your answers!

## Exercise 18

(4 points)
Let $(K,<)$ be an ordered field such that for any $f(\mathrm{x}) \in K[\mathrm{x}]$ the intermediate value property holds, i.e. for any $a, b \in K$ with $a<b$

$$
f(a)<0<f(b) \Longrightarrow \exists c \in] a, b[: f(c)=0 .
$$

Show that $K$ is real closed.

## Exercise 19

(4 points)
Let $R$ be a real closed field, let $f \in R[\mathrm{x}]$ be a non-constant polynomial. Let $a, b \in R$ be such that $a<b$ and $f(a) f(b) \neq 0$ and let $c \in] a, b\left[\right.$ be such that $f(c)=0$. Suppose $\operatorname{gcd}\left(f, f^{\prime}\right)=1$. Show that there exists $\delta \in R$ such that for all $x \in R$ we have

$$
|x-c|<\delta \Rightarrow \operatorname{sign}\left(f(x) f^{\prime}(x)\right)=\operatorname{sign}(x-c)= \begin{cases}-1 & \text { if } x<c \\ 0 & \text { if } x=c \\ 1 & \text { if } x>c\end{cases}
$$

## Exercise 20

(4 points)
Let $R$ be a real closed field and let $f(\mathrm{x})=\mathrm{x}^{3}+6 \mathrm{x}^{2}-16 \in R[\mathrm{x}]$.
(a) Compute the Sturm sequence of $f$.
(b) Show that $f$ has three distinct roots in $[-6,2]$.
(c) Denote the roots of $f$ by $\alpha_{1}<\alpha_{2}<\alpha_{3}$. Show that $\alpha_{1} \in[-6,-5], \alpha_{2} \in[-3,-1]$ and $\alpha_{3} \in[1,2]$.

## Bonus Exercise - optional <br> (4 points)

In lectures 4 and 5 it was shown that if a field $K$ is real closed, then $K^{2}$ is a positive cone. In this exercise you will show that the converse does not hold.
Definition. An ordered field $K$ in which every non-negative element is a square, i.e., $K^{2}$ is a positive cone, is called a Euclidean field.
Let $K_{0}:=\mathbb{Q}$. Let $k_{0} \in K_{0}$ be such that $\sqrt{k_{0}} \in \mathbb{R} \backslash K_{0}$. Define $K_{1}:=\left\{a_{0}+b_{0} \sqrt{k_{0}} \mid a_{0}, b_{0} \in K_{0}\right\}$. Now let $k_{1} \in K_{1}$ be such that $\sqrt{k_{1}} \in \mathbb{R} \backslash K_{1}$ and let $K_{2}:=\left\{a_{1}+b_{1} \sqrt{k_{1}} \mid a_{1}, b_{1} \in K_{1}\right\}$. Keep proceeding this way to find a tower of field extensions $\mathbb{Q}=K_{0} \subset K_{1} \subset \ldots \subset K_{i} \subset \ldots$.
Definition. A number $\alpha \in \mathbb{R}$ is called constructible if there exists $n \in \mathbb{N}$ and a sequence $\mathbb{Q}=K_{0} \subset$ $K_{1} \subset \ldots \subset K_{i} \subset \ldots$ as above, such that $\alpha \in K_{n}$. The set $\mathcal{K}=\{\alpha \in \mathbb{R} \mid \alpha$ is constructible $\}$ forms a field.
(a) Show that $\mathcal{K}$ is a euclidean field.
(b) Show that, for every $\alpha \in \mathcal{K}$, there exists $r \in \mathbb{N}_{0}$ such tht $[\mathbb{Q}(\alpha): \mathbb{Q}]=2^{r}$.
(c) Deduce that $\mathcal{K}$ is not real closed.

Hint: find a cubic polynomial that has no root in $\mathcal{K}$.

Please hand in your solutions by Thursday, 1 December 2022, 10:00h in the postbox 14 or per e-mail to your tutor.

