Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Michele Serra
Moritz Schick

Real Algebraic Geometry I

Exercise Sheet 6 Extensions of orderings and semialgebraic sets

Exercise 21

(4 points)
Let (K, P) be an ordered field and let R be the real closure of (K, P). Recall that R can be equipped with the order topology and K can be considered as a topological subspace of R.
(a) Suppose that (K, P) is Archimedean. Show that K is dense in R, i.e. that R is the topological closure of K in R.
(b) Construct an ordered field which is not dense in its real closure.
(Hint: Take a suitable field Q and consider $Q(\mathrm{x})$ with a suitable ordering.)

Exercise 22

(4 points)
(a) Let (K, P) be and ordered field, R a real closure and let L / K be a finite algebraic extension. Let $\alpha \in L$ be a primitive element: $L=K(\alpha)$ and let $f=\operatorname{MinPol}(\alpha / K)$ be the minimal polynomial of α over K.

- Show that there exists a bijection between the sets

$$
\left\{\psi: L \hookrightarrow R \mid \psi \text { is an embedding and }\left.\psi\right|_{K}=\operatorname{id}_{K}\right\} \quad \longleftrightarrow \quad\{\beta \in R \mid f(\beta)=0\}
$$

- Use this to deduce Corollary 2.7 from Corollary 2.6 (lecture 8).
(b) Let $\alpha=i \sqrt[4]{2}$ and $L=\mathbb{Q}(\alpha)$.
- Show that $\operatorname{MinPol}(\alpha / \mathbb{Q})=x^{4}-2$;
- Compute the number of extensions of the natural order \leq on \mathbb{Q} to L.

Exercise 23

(4 points)
Let R be a real closed field and let $S(\underline{T}, \underline{X})$ be the system

$$
T_{2} X_{1}^{2}+T_{1} X_{2}^{2}+T_{1} T_{2} X_{1}+1=0,
$$

where $\underline{T}=\left(T_{1}, T_{2}\right)$ and $\underline{X}=\left(X_{1}, X_{2}\right)$. Find systems of equalities and inequalities $S_{1}(\underline{T}), \ldots, S_{\ell}(\underline{T})$ with coefficients in \mathbb{Q} such that

$$
\forall \underline{T} \in R^{2}:\left[\left(\exists \underline{X} \in R^{2}: S(\underline{T}, \underline{X})\right) \Longleftrightarrow \bigvee_{i=1}^{\ell} S_{i}(\underline{T})\right]
$$

Exercise 24

(4 points)
Let R be a real closed field.
(a) Show that the semialgebraic sets in R are exactly the finite unions of points in R and open intervals with endpoints in $R \cup\{\infty,-\infty\}$.
(b) Let $m \in \mathbb{N}$ and let A be a semialgebraic subset of R^{m}. Show that for some $n \in \mathbb{N}$, there is an algebraic set $B \subseteq R^{m+n}$ such that $\pi(B)=A$, where $\pi: R^{m+n} \rightarrow R^{m}$ is the projection map introduced in Lecture 11.
(Hint: Find a polynomial $f \in R[\underline{t}, \underline{x}]$, where $\underline{t}=\left(t_{1}, \ldots, t_{m}\right)$ and $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$, such that $\left.A=\left\{\underline{t} \in R^{m} \mid \exists \underline{x} \in R^{n}: f(\underline{t}, \underline{x})=0\right\}.\right)$

Please hand in your solutions by Thursday, 8 December 2022, 10:00h in the postbox 14 or per e-mail to your tutor.

